Loading [MathJax]/extensions/TeX/newcommand.js
Prev Next

\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }This is cppad-20221105 documentation. Here is a link to its current documentation .
Reverse Mode Jacobian Sparsity Patterns

Syntax
f.rev_jac_sparsity(
    
pattern_intransposedependencyinternal_boolpattern_out
)


Purpose
We use F : \B{R}^n \rightarrow \B{R}^m to denote the AD function corresponding to the operation sequence stored in f . Fix R \in \B{R}^{\ell \times m} and define the function J(x) = R * F^{(1)} ( x ) Given the sparsity pattern for R , rev_jac_sparsity computes a sparsity pattern for J(x) .

x
Note that the sparsity pattern J(x) corresponds to the operation sequence stored in f and does not depend on the argument x . (The operation sequence may contain CondExp and VecAD operations.)

SizeVector
The type SizeVector is a SimpleVector class with elements of type size_t.

f
The object f has prototype
    ADFun<
Basef

pattern_in
The argument pattern_in has prototype
    const sparse_rc<
SizeVector>& pattern_in
see sparse_rc . If transpose it is false (true), pattern_in is a sparsity pattern for R ( R^\R{T} ).

transpose
This argument has prototype
    bool 
transpose
See pattern_in above and pattern_out below.

dependency
This argument has prototype
    bool 
dependency
see pattern_out below.

internal_bool
If this is true, calculations are done with sets represented by a vector of boolean values. Otherwise, a vector of sets of integers is used.

pattern_out
This argument has prototype
    sparse_rc<
SizeVector>& pattern_out
This input value of pattern_out does not matter. If transpose it is false (true), upon return pattern_out is a sparsity pattern for J(x) ( J(x)^\R{T} ). If dependency is true, pattern_out is a dependency pattern instead of sparsity pattern.

Sparsity for Entire Jacobian
Suppose that R is the m \times m identity matrix. In this case, pattern_out is a sparsity pattern for F^{(1)} ( x ) ( F^{(1)} (x)^\R{T} ) if transpose is false (true).

Example
The file rev_jac_sparsity.cpp contains an example and test of this operation.
Input File: include/cppad/core/rev_jac_sparsity.hpp