|
Prev
| Next
|
|
|
|
|
|
rev_jac_sparsity.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Reverse Mode Jacobian Sparsity: Example and Test
# include <cppad/cppad.hpp>
bool rev_jac_sparsity(void)
{ bool ok = true;
using CppAD::AD;
typedef CPPAD_TESTVECTOR(size_t) SizeVector;
typedef CppAD::sparse_rc<SizeVector> sparsity;
//
// domain space vector
size_t n = 2;
CPPAD_TESTVECTOR(AD<double>) ax(n);
ax[0] = 0.;
ax[1] = 1.;
// declare independent variables and start recording
CppAD::Independent(ax);
// range space vector
size_t m = 3;
CPPAD_TESTVECTOR(AD<double>) ay(m);
ay[0] = ax[0];
ay[1] = ax[0] * ax[1];
ay[2] = ax[1];
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
// sparsity pattern for the identity matrix
size_t nr = m;
size_t nc = m;
size_t nnz_in = m;
sparsity pattern_in(nr, nc, nnz_in);
for(size_t k = 0; k < nnz_in; k++)
{ size_t r = k;
size_t c = k;
pattern_in.set(k, r, c);
}
// compute sparsite pattern for J(x) = F'(x)
bool transpose = false;
bool dependency = false;
bool internal_bool = false;
sparsity pattern_out;
f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
size_t nnz = pattern_out.nnz();
ok &= nnz == 4;
ok &= pattern_out.nr() == m;
ok &= pattern_out.nc() == n;
{ // check results
const SizeVector& row( pattern_out.row() );
const SizeVector& col( pattern_out.col() );
SizeVector col_major = pattern_out.col_major();
//
ok &= row[ col_major[0] ] == 0 && col[ col_major[0] ] == 0;
ok &= row[ col_major[1] ] == 1 && col[ col_major[1] ] == 0;
ok &= row[ col_major[2] ] == 1 && col[ col_major[2] ] == 1;
ok &= row[ col_major[3] ] == 2 && col[ col_major[3] ] == 1;
}
// note that the transpose of the identity is the identity
transpose = true;
internal_bool = true;
f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
nnz = pattern_out.nnz();
ok &= nnz == 4;
ok &= pattern_out.nr() == n;
ok &= pattern_out.nc() == m;
{ // check results
const SizeVector& row( pattern_out.row() );
const SizeVector& col( pattern_out.col() );
SizeVector row_major = pattern_out.row_major();
//
ok &= col[ row_major[0] ] == 0 && row[ row_major[0] ] == 0;
ok &= col[ row_major[1] ] == 1 && row[ row_major[1] ] == 0;
ok &= col[ row_major[2] ] == 1 && row[ row_major[2] ] == 1;
ok &= col[ row_major[3] ] == 2 && row[ row_major[3] ] == 1;
}
return ok;
}
Input File: example/sparse/rev_jac_sparsity.cpp