@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Computing Dependency: Example and Test
Discussion
The partial of an dependent variable with respect to an independent variable
might always be zero even though the dependent variable depends on the
value of the dependent variable. Consider the following case
@[@
f(x) = {\rm sign} (x) =
\left\{ \begin{array}{rl}
+1 & {\rm if} \; x > 0 \\
0 & {\rm if} \; x = 0 \\
-1 & {\rm if} \; x < 0
\end{array} \right.
@]@
In this case the value of @(@
f(x)
@)@ depends on the value of @(@
x
@)@
but CppAD always returns zero for the derivative of the sign
function.
Dependency Pattern
If the i-th dependent variables depends on the
value of the j-th independent variable,
the corresponding entry in the dependency pattern is non-zero (true).
Otherwise it is zero (false).
CppAD uses sparsity patterns
to represent dependency patterns.
Computation
The
dependency
argument to
for_jac_sparsity
and
RevSparseJac
is a flag that signals
that the dependency pattern (instead of the sparsity pattern) is computed.
# include <cppad/cppad.hpp>
namespace {
double heavyside(const double& x)
{ if( x <= 0.0 )
return 0.0;
return 1.0;
}
CPPAD_DISCRETE_FUNCTION(double, heavyside)
}
bool dependency(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedefCPPAD_TESTVECTOR(size_t) SizeVector;
typedef CppAD::sparse_rc<SizeVector> sparsity;
// VecAD object for use later
CppAD::VecAD<double> vec_ad(2);
vec_ad[0] = 0.0;
vec_ad[1] = 1.0;
// domain space vector
size_t n = 5;
CPPAD_TESTVECTOR(AD<double>) ax(n);
for(size_t j = 0; j < n; j++)
ax[j] = AD<double>(j + 1);
// declare independent variables and start tape recording
CppAD::Independent(ax);
// some AD constants
AD<double> azero(0.0), aone(1.0);
// range space vector
size_t m = n;
size_t m1 = n - 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
// Note that ay[m1 - j] depends on ax[j]
ay[m1 - 0] = sign( ax[0] );
ay[m1 - 1] = CondExpLe( ax[1], azero, azero, aone);
ay[m1 - 2] = CondExpLe( azero, ax[2], azero, aone);
ay[m1 - 3] = heavyside( ax[3] );
ay[m1 - 4] = vec_ad[ ax[4] - AD<double>(4.0) ];
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
// sparsity pattern for n by n identity matrix
size_t nr = n;
size_t nc = n;
size_t nnz = n;
sparsity pattern_in(nr, nc, nnz);
for(size_t k = 0; k < nnz; k++)
{ size_t r = k;
size_t c = k;
pattern_in.set(k, r, c);
}
// compute dependency pattern
bool transpose = false;
bool dependency = true; // would transpose dependency pattern
bool internal_bool = true; // does not affect result
sparsity pattern_out;
f.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_out
);
const SizeVector& row( pattern_out.row() );
const SizeVector& col( pattern_out.col() );
SizeVector col_major = pattern_out.col_major();
// check result
ok &= pattern_out.nr() == n;
ok &= pattern_out.nc() == n;
ok &= pattern_out.nnz() == n;
for(size_t k = 0; k < n; k++)
{ ok &= row[ col_major[k] ] == m1 - k;
ok &= col[ col_major[k] ] == k;
}
// -----------------------------------------------------------// RevSparseJac and set dependency
CppAD::vector< std::set<size_t> > eye_set(m), depend_set(m);
for(size_t i = 0; i < m; i++)
{ ok &= eye_set[i].empty();
eye_set[i].insert(i);
}
depend_set = f.RevSparseJac(n, eye_set, transpose, dependency);
for(size_t i = 0; i < m; i++)
{ std::set<size_t> check;
check.insert(m1 - i);
ok &= depend_set[i] == check;
}
dependency = false;
depend_set = f.RevSparseJac(n, eye_set, transpose, dependency);
for(size_t i = 0; i < m; i++)
ok &= depend_set[i].empty();
return ok;
}