Prev Next pow_reverse

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Power Function Reverse Mode Theory
We use the reverse theory standard math function definition for the functions @(@ H @)@ and @(@ G @)@. The zero order forward mode formula for the power function is @[@ z^{(0)} = F ( x^{(0)} ) @]@ @[@ \begin{array}{rcl} \D{H}{ x^{(0)} } & = & \D{G}{ x^{(0)} } + \D{G}{ z^{(0)} } \D{ z^{(0)} }{ x^{(0)} } \\ \D{ z^{(0)} }{ x^{(0)} } & = & y [ x^{(0)} ]^{y - 1} = y z^{(0)} / x{(0)} \end{array} @]@ All the equations below apply to the case where @(@ j > 0 @)@. For this case, the equation for @(@ z^{(j)} @)@ is @[@ z^{(j)} = \left. \left( y z^{(0)} x^{(j)} + \frac{1}{j} \sum_{k=1}^{j-1} k ( y x^{(k)} z^{(j-k)} - z^{(k)} x^{(j-k)} ) \right) \right/ x^{(0)} @]@

x^j
@[@ \begin{array}{rcl} \D{H}{ x^{(j)} } & = & \D{G}{ x^{(j)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(j)} } \\ \D{ z^{(j)} }{ x^{(j)} } & = & y z^{(0)} / x^{(0)} \end{array} @]@
x^k
For @(@ k = 1 , \ldots , j-1 @)@ @[@ \begin{array}{rcl} \D{H}{ x^{(k)} } & = & \D{G}{ x^{(k)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(k)} } \\ \D{ z^{(j)} }{ x^{(k)} } & = & \frac{1}{j} ( k y - (j-k) ) z^{(j-k)} / x^{(0)} \end{array} @]@

z^k
For @(@ k = 1 , \ldots , j-1 @)@ @[@ \begin{array}{rcl} \D{H}{ z^{(k)} } & = & \D{G}{ z^{(k)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ z^{(k)} } \\ \D{ z^{(j)} }{ z^{(k)} } & = & \frac{1}{j} ( (j-k) y - k ) x^{(j-k)} / x^{(0)} \end{array} @]@

x^0
@[@ \begin{array}{rcl} \D{H}{ x^{(0)} } & = & \D{G}{ x^{(0)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(0)} } \\ \D{ z^{(j)} }{ x^{(0)} } & = & - z^{(j)} / x^{(0)} \end{array} @]@
z^0
@[@ \begin{array}{rcl} \D{H}{ z^{(0)} } & = & \D{G}{ z^{(0)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ z^{(0)} } \\ \D{ z^{(j)} }{ z^{(0)} } & = & y x^{(j)} / x^{(0)} \end{array} @]@
Input File: omh/theory/pow_reverse.omh