Prev | Next | reverse_identity |
j
-th column of @(@
x \in \B{R}^{n \times p}
@)@.
The theorem below implies that
@[@
\D{ W_j }{ x^{(i)} } (x) = \D{ W_{j-i} }{ x^{(0)} } (x)
@]@
A general reverse sweep
calculates the values
@[@
\D{ W_{p-1} }{ x^{(i)} } (x) \hspace{1cm} (i = 0 , \ldots , p-1)
@]@
But the return values for a reverse sweep are specified
in terms of the more useful values
@[@
\D{ W_j }{ x^{(0)} } (x) \hspace{1cm} (j = 0 , \ldots , p-1)
@]@
j
-th column of
@(@
x \in \B{R}^{n \times p}
@)@.
It follows that
for all @(@
i, j
@)@ such that @(@
i \leq j < p
@)@,
@[@
\begin{array}{rcl}
\D{ y^{(j)} }{ x^{(i)} } (x) & = & \D{ y^{(j-i)} }{ x^{(0)} } (x)
\end{array}
@]@
k
-th
partial of @(@
t^i
@)@ with respect to @(@
t
@)@ is zero.
Thus, the partial with respect to @(@
t
@)@ is given by
@[@
\begin{array}{rcl}
\Dpow{j}{t} \left[ t^i ( F^{(1)} \circ Z ) (t, x) \right]
& = &
\sum_{k=0}^i
\left( \begin{array}{c} j \\ k \end{array} \right)
\frac{ i ! }{ (i - k) ! } t^{i-k} \;
\Dpow{j-k}{t} ( F^{(1)} \circ Z ) (t, x)
\\
\left\{
\Dpow{j}{t} \left[ t^i ( F^{(1)} \circ Z ) (t, x) \right]
\right\}_{t=0}
& = &
\left( \begin{array}{c} j \\ i \end{array} \right)
i ! \Dpow{j-i}{t} ( F^{(1)} \circ Z ) (t, x)
\\
& = &
\frac{ j ! }{ (j - i) ! }
\Dpow{j-i}{t} ( F^{(1)} \circ Z ) (t, x)
\\
\D{ y^{(j)} }{ x^{(i)} } (x)
& = &
\frac{ 1 }{ (j - i) ! }
\Dpow{j-i}{t} ( F^{(1)} \circ Z ) (t, x)
\end{array}
@]@
Applying this formula to the case where @(@
j
@)@
is replaced by @(@
j - i
@)@ and @(@
i
@)@ is replaced by zero,
we obtain
@[@
\D{ y^{(j-i)} }{ x^{(0)} } (x)
=
\frac{ 1 }{ (j - i) ! }
\Dpow{j-i}{t} ( F^{(1)} \circ Z ) (t, x)
=
\D{ y^{(j)} }{ x^{(i)} } (x)
@]@
which completes the proof