|
Prev
| Next
|
|
|
|
|
|
colpack_hes.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
ColPack: Sparse Hessian Example and Test
# include <cppad/cppad.hpp>
bool colpack_hes(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CppAD::vector<size_t> i_vector;
typedef CppAD::sparse_rc<i_vector> sparsity;
typedef CppAD::sparse_rcv<i_vector, d_vector> sparse_matrix;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
//
// domain space vector
size_t n = 5;
a_vector a_x(n);
for(size_t j = 0; j < n; j++)
a_x[j] = AD<double> (0);
//
// declare independent variables and starting recording
CppAD::Independent(a_x);
// colpack example case where hessian is a spear head
// i.e, H(i, j) non zero implies i = 0, j = 0, or i = j
AD<double> sum = 0.0;
// partial_0 partial_j = x[j]
// partial_j partial_j = x[0]
for(size_t j = 1; j < n; j++)
sum += a_x[0] * a_x[j] * a_x[j] / 2.0;
//
// partial_i partial_i = 2 * x[i]
for(size_t i = 0; i < n; i++)
sum += a_x[i] * a_x[i] * a_x[i] / 3.0;
// declare dependent variables
size_t m = 1;
a_vector a_y(m);
a_y[0] = sum;
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// new value for the independent variable vector
d_vector x(n);
for(size_t j = 0; j < n; j++)
x[j] = double(j + 1);
/*
[ 2 2 3 4 5 ]
hes = [ 2 5 0 0 0 ]
[ 3 0 7 0 0 ]
[ 4 0 0 9 0 ]
[ 5 0 0 0 11 ]
*/
// Normally one would use CppAD to compute sparsity pattern, but for this
// example we set it directly
size_t nr = n;
size_t nc = n;
size_t nnz = n + 2 * (n - 1);
sparsity pattern(nr, nc, nnz);
for(size_t k = 0; k < n; k++)
{ size_t r = k;
size_t c = k;
pattern.set(k, r, c);
}
for(size_t i = 1; i < n; i++)
{ size_t k = n + 2 * (i - 1);
size_t r = i;
size_t c = 0;
pattern.set(k, r, c);
pattern.set(k+1, c, r);
}
// subset of elements to compute
// (only compute lower traingle)
nnz = n + (n - 1);
sparsity lower_triangle(nr, nc, nnz);
d_vector check(nnz);
for(size_t k = 0; k < n; k++)
{ size_t r = k;
size_t c = k;
lower_triangle.set(k, r, c);
check[k] = 2.0 * x[k];
if( k > 0 )
check[k] += x[0];
}
for(size_t j = 1; j < n; j++)
{ size_t k = n + (j - 1);
size_t r = 0;
size_t c = j;
lower_triangle.set(k, r, c);
check[k] = x[c];
}
sparse_matrix subset( lower_triangle );
// check results for both CppAD and Colpack
for(size_t i_method = 0; i_method < 4; i_method++)
{ // coloring method
std::string coloring;
switch(i_method)
{ case 0:
coloring = "cppad.symmetric";
break;
case 1:
coloring = "cppad.general";
break;
case 2:
coloring = "colpack.symmetric";
break;
case 3:
coloring = "colpack.general";
break;
}
//
// compute Hessian
CppAD::sparse_hes_work work;
d_vector w(m);
w[0] = 1.0;
size_t n_sweep = f.sparse_hes(
x, w, subset, pattern, coloring, work
);
//
// check result
const d_vector& hes( subset.val() );
for(size_t k = 0; k < nnz; k++)
ok &= NearEqual(check[k], hes[k], eps, eps);
if(
coloring == "cppad.symmetric"
|| coloring == "colpack.symmetric"
)
ok &= n_sweep == 2;
else
ok &= n_sweep == 5;
}
return ok;
}
Input File: example/sparse/colpack_hes.cpp