|
Prev
| Next
|
|
|
|
|
|
colpack_jacobian.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
ColPack: Sparse Jacobian Example and Test
# include <cppad/cppad.hpp>
bool colpack_jacobian(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CppAD::vector<size_t> i_vector;
size_t i, j, k, ell;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 4;
a_vector a_x(n);
for(j = 0; j < n; j++)
a_x[j] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(a_x);
size_t m = 3;
a_vector a_y(m);
a_y[0] = a_x[0] + a_x[1];
a_y[1] = a_x[2] + a_x[3];
a_y[2] = a_x[0] + a_x[1] + a_x[2] + a_x[3] * a_x[3] / 2.;
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// new value for the independent variable vector
d_vector x(n);
for(j = 0; j < n; j++)
x[j] = double(j);
/*
[ 1 1 0 0 ]
jac = [ 0 0 1 1 ]
[ 1 1 1 x_3]
*/
d_vector check(m * n);
check[0] = 1.; check[1] = 1.; check[2] = 0.; check[3] = 0.;
check[4] = 0.; check[5] = 0.; check[6] = 1.; check[7] = 1.;
check[8] = 1.; check[9] = 1.; check[10] = 1.; check[11] = x[3];
// Normally one would use f.ForSparseJac or f.RevSparseJac to compute
// sparsity pattern, but for this example we extract it from check.
std::vector< std::set<size_t> > p(m);
// using row and column indices to compute non-zero in rows 1 and 2
i_vector row, col;
for(i = 0; i < m; i++)
{ for(j = 0; j < n; j++)
{ ell = i * n + j;
if( check[ell] != 0. )
{ row.push_back(i);
col.push_back(j);
p[i].insert(j);
}
}
}
size_t K = row.size();
d_vector jac(K);
// empty work structure
CppAD::sparse_jacobian_work work;
ok &= work.color_method == "cppad";
// choose to use ColPack
work.color_method = "colpack";
// forward mode
size_t n_sweep = f.SparseJacobianForward(x, p, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 4;
// reverse mode
work.clear();
work.color_method = "colpack";
n_sweep = f.SparseJacobianReverse(x, p, row, col, jac, work);
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], jac[k], eps, eps);
}
ok &= n_sweep == 2;
return ok;
}
Input File: example/sparse/colpack_jacobian.cpp