|
Prev
| Next
|
|
|
|
|
|
colpack_hessian.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
ColPack: Sparse Hessian Example and Test
# include <cppad/cppad.hpp>
bool colpack_hessian(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CppAD::vector<size_t> i_vector;
size_t i, j, k, ell;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 5;
a_vector a_x(n);
for(j = 0; j < n; j++)
a_x[j] = AD<double> (0);
// declare independent variables and starting recording
CppAD::Independent(a_x);
// colpack example case where hessian is a spear head
// i.e, H(i, j) non zero implies i = 0, j = 0, or i = j
AD<double> sum = 0.0;
// partial_0 partial_j = x[j]
// partial_j partial_j = x[0]
for(j = 1; j < n; j++)
sum += a_x[0] * a_x[j] * a_x[j] / 2.0;
//
// partial_i partial_i = 2 * x[i]
for(i = 0; i < n; i++)
sum += a_x[i] * a_x[i] * a_x[i] / 3.0;
// declare dependent variables
size_t m = 1;
a_vector a_y(m);
a_y[0] = sum;
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
// new value for the independent variable vector
d_vector x(n);
for(j = 0; j < n; j++)
x[j] = double(j + 1);
/*
[ 2 2 3 4 5 ]
hes = [ 2 5 0 0 0 ]
[ 3 0 7 0 0 ]
[ 4 0 0 9 0 ]
[ 5 0 0 0 11 ]
*/
d_vector check(n * n);
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
{ size_t index = i * n + j;
check[index] = 0.0;
if( i == 0 && 1 <= j )
check[index] += x[j];
if( 1 <= i && j == 0 )
check[index] += x[i];
if( i == j )
{ check[index] += 2.0 * x[i];
if( i != 0 )
check[index] += x[0];
}
}
}
// Normally one would use f.RevSparseHes to compute
// sparsity pattern, but for this example we extract it from check.
std::vector< std::set<size_t> > p(n);
i_vector row, col;
for(i = 0; i < n; i++)
{ for(j = 0; j < n; j++)
{ ell = i * n + j;
if( check[ell] != 0. )
{ // insert this non-zero entry in sparsity pattern
p[i].insert(j);
// the Hessian is symmetric, so only lower triangle
if( j <= i )
{ row.push_back(i);
col.push_back(j);
}
}
}
}
size_t K = row.size();
d_vector hes(K);
// default coloring method is cppad.symmetric
CppAD::sparse_hessian_work work;
ok &= work.color_method == "cppad.symmetric";
// contrast and check results for both CppAD and Colpack
for(size_t i_method = 0; i_method < 4; i_method++)
{ // empty work structure
switch(i_method)
{ case 0:
work.color_method = "cppad.symmetric";
break;
case 1:
work.color_method = "cppad.general";
break;
case 2:
work.color_method = "colpack.symmetric";
break;
case 3:
work.color_method = "colpack.general";
break;
}
// compute Hessian
d_vector w(m);
w[0] = 1.0;
size_t n_sweep = f.SparseHessian(x, w, p, row, col, hes, work);
//
// check result
for(k = 0; k < K; k++)
{ ell = row[k] * n + col[k];
ok &= NearEqual(check[ell], hes[k], eps, eps);
}
if(
work.color_method == "cppad.symmetric"
|| work.color_method == "colpack.symmetric"
)
ok &= n_sweep == 2;
else
ok &= n_sweep == 5;
//
// check that clear resets color_method to cppad.symmetric
work.clear();
ok &= work.color_method == "cppad.symmetric";
}
return ok;
}
Input File: example/sparse/colpack_hessian.cpp