Prev Next chkpoint_two_compare.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Compare With and Without Checkpointing: Example and Test

# include <cppad/cppad.hpp>

namespace {
    using CppAD::AD;
    typedef CPPAD_TESTVECTOR(AD<double>)            ADVector;
    typedef CPPAD_TESTVECTOR(size_t)                size_vector;

    void f_algo(const ADVector& y, ADVector& z)
    {   z[0] = 0.0;
        z[1] = 0.0;
        for(size_t k = 0; k < 3; k++)
        {   z[0] += y[0];
            z[1] += y[1];
        }
        return;
    }
    void g_algo(const ADVector& x, ADVector& y)
    {   y[0] = 1.0;
        y[1] = 1.0;
        for(size_t k = 0; k < 3; k++)
        {   y[0] *= x[0];
            y[1] *= x[1];
        }
        return;
    }
    bool equal(
       const CppAD::sparse_rc<size_vector>& pattern_left  ,
       const CppAD::sparse_rc<size_vector>& pattern_right )
    {
        size_vector row_major_left = pattern_left.row_major();
        size_vector row_major_right = pattern_right.row_major();
        bool ok = pattern_left.nnz() == pattern_right.nnz();
        if( ! ok )
            return ok;
        for(size_t k = 0; k < pattern_left.nnz(); ++k)
        {   size_t r_left = pattern_left.row()[ row_major_left[k] ];
            size_t c_left = pattern_left.col()[ row_major_left[k] ];
            size_t r_right = pattern_right.row()[ row_major_right[k] ];
            size_t c_right = pattern_right.col()[ row_major_right[k] ];
            ok &= (r_left == r_right) && (c_left == c_right);
        }
        return ok;
    }
}
bool compare(void)
{   bool ok = true;
    using CppAD::NearEqual;
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

    // AD vectors holding x, y, and z values
    size_t nx = 2, ny = 2, nz = 2;
    ADVector ax(nx), ay(ny), az(nz);

    // record the function g_fun(x)
    for(size_t j = 0; j < nx; j++)
        ax[j] = double(j + 1);
    Independent(ax);
    g_algo(ax, ay);
    CppAD::ADFun<double> g_fun(ax, ay);

    // record the function f_fun(y)
    Independent(ay);
    f_algo(ay, az);
    CppAD::ADFun<double> f_fun(ay, az);

    // create checkpoint versions of f and g
    bool internal_bool    = true;
    bool use_hes_sparsity = true;
    bool use_base2ad      = false;
    bool use_in_parallel  = false;
    CppAD::chkpoint_two<double> f_chk(f_fun, "f_chk",
        internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
    );
    CppAD::chkpoint_two<double> g_chk(g_fun, "g_chk",
        internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
    );

    // Record a version of z = f[g(x)] without checkpointing
    Independent(ax);
    g_algo(ax, ay);
    f_algo(ay, az);
    CppAD::ADFun<double> check_not(ax, az);

    // Record a version of z = f[g(x)] with checkpointing
    Independent(ax);
    g_chk(ax, ay);
    f_chk(ay, az);
    CppAD::ADFun<double> check_yes(ax, az);

    // checkpointing should use fewer operations
    ok &= check_not.size_var() > check_yes.size_var();

    // this does not really save space because f and g are only used once
    ok &= check_not.size_var() <= check_yes.size_var()
        + f_fun.size_var() + g_fun.size_var();

    // compare forward mode results for orders 0, 1, 2
    size_t q1 = 3; // order_up + 1
    CPPAD_TESTVECTOR(double) x_q(nx*q1), z_not(nz*q1), z_yes(nz*q1);
    for(size_t j = 0; j < nx; j++)
    {   for(size_t k = 0; k < q1; k++)
            x_q[ j * q1 + k ] = 1.0 / double(q1 - k);
    }
    z_not = check_not.Forward(q1-1, x_q);
    z_yes = check_yes.Forward(q1-1, x_q);
    for(size_t i = 0; i < nz; i++)
    {   for(size_t k = 0; k < q1; k++)
        {   double zik_not = z_not[ i * q1 + k];
            double zik_yes = z_yes[ i * q1 + k];
            ok &= NearEqual(zik_not, zik_yes, eps99, eps99);
        }
    }

    // compare reverse mode results for orders 0, 1, 2
    CPPAD_TESTVECTOR(double) w(nz*q1), dw_not(nx*q1), dw_yes(nx*q1);
    for(size_t i = 0; i < nz * q1; i++)
        w[i] = 1.0 / double(i + 1);
    dw_not = check_not.Reverse(q1, w);
    dw_yes = check_yes.Reverse(q1, w);
    for(size_t j = 0; j < nx; j++)
    {   for(size_t k = 0; k < q1; k++)
        {   double dwjk_not = dw_not[ j * q1 + k];
            double dwjk_yes = dw_yes[ j * q1 + k];
            ok &= NearEqual(dwjk_not, dwjk_yes, eps99, eps99);
        }
    }

    // compare Jacobian sparsity patterns
    CppAD::sparse_rc<size_vector> pattern_in, pattern_not, pattern_yes;
    pattern_in.resize(nx, nx, nx);
    for(size_t k = 0; k < nx; ++k)
        pattern_in.set(k, k, k);
    bool transpose     = false;
    bool dependency    = false;
    internal_bool      = false;
    // for_jac_sparsity (not internal_bool is false)
    check_not.for_jac_sparsity(
        pattern_in, transpose, dependency, internal_bool, pattern_not
    );
    pattern_in.resize(nz, nz, nz);
    for(size_t k = 0; k < nz; ++k)
        pattern_in.set(k, k, k);
    // forward and reverse Jacobian sparsity should give same answer
    check_yes.rev_jac_sparsity(
        pattern_in, transpose, dependency, internal_bool, pattern_yes
    );
    ok &= equal(pattern_not, pattern_yes );

    // compare Hessian sparsity patterns
    CPPAD_TESTVECTOR(bool) select_x(nx), select_z(nz);
    for(size_t j = 0; j < nx; ++j)
        select_x[j] = true;
    for(size_t i = 0; i < nz; ++i)
        select_z[i] = true;
    transpose       = false;
    // Reverse should give same results as forward because
    // previous for_jac_sparsity used identity for pattern_in.
    // Note that internal_bool must be same as in call to for_sparse_jac.
    check_not.rev_hes_sparsity(
        select_z, transpose, internal_bool, pattern_yes
    );
    // internal_bool need not be the same during a call to for_hes_sparsity
    internal_bool = ! internal_bool;
    check_yes.for_hes_sparsity(
        select_x, select_z, internal_bool, pattern_not
    );
    ok &= equal(pattern_not, pattern_yes);
    //
    return ok;
}

Input File: example/chkpoint_two/compare.cpp