|
Prev
| Next
|
|
|
|
|
|
chkpoint_two_compare.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Compare With and Without Checkpointing: Example and Test
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
typedef CPPAD_TESTVECTOR(size_t) size_vector;
void f_algo(const ADVector& y, ADVector& z)
{ z[0] = 0.0;
z[1] = 0.0;
for(size_t k = 0; k < 3; k++)
{ z[0] += y[0];
z[1] += y[1];
}
return;
}
void g_algo(const ADVector& x, ADVector& y)
{ y[0] = 1.0;
y[1] = 1.0;
for(size_t k = 0; k < 3; k++)
{ y[0] *= x[0];
y[1] *= x[1];
}
return;
}
bool equal(
const CppAD::sparse_rc<size_vector>& pattern_left ,
const CppAD::sparse_rc<size_vector>& pattern_right )
{
size_vector row_major_left = pattern_left.row_major();
size_vector row_major_right = pattern_right.row_major();
bool ok = pattern_left.nnz() == pattern_right.nnz();
if( ! ok )
return ok;
for(size_t k = 0; k < pattern_left.nnz(); ++k)
{ size_t r_left = pattern_left.row()[ row_major_left[k] ];
size_t c_left = pattern_left.col()[ row_major_left[k] ];
size_t r_right = pattern_right.row()[ row_major_right[k] ];
size_t c_right = pattern_right.col()[ row_major_right[k] ];
ok &= (r_left == r_right) && (c_left == c_right);
}
return ok;
}
}
bool compare(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// AD vectors holding x, y, and z values
size_t nx = 2, ny = 2, nz = 2;
ADVector ax(nx), ay(ny), az(nz);
// record the function g_fun(x)
for(size_t j = 0; j < nx; j++)
ax[j] = double(j + 1);
Independent(ax);
g_algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
// record the function f_fun(y)
Independent(ay);
f_algo(ay, az);
CppAD::ADFun<double> f_fun(ay, az);
// create checkpoint versions of f and g
bool internal_bool = true;
bool use_hes_sparsity = true;
bool use_base2ad = false;
bool use_in_parallel = false;
CppAD::chkpoint_two<double> f_chk(f_fun, "f_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
CppAD::chkpoint_two<double> g_chk(g_fun, "g_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
// Record a version of z = f[g(x)] without checkpointing
Independent(ax);
g_algo(ax, ay);
f_algo(ay, az);
CppAD::ADFun<double> check_not(ax, az);
// Record a version of z = f[g(x)] with checkpointing
Independent(ax);
g_chk(ax, ay);
f_chk(ay, az);
CppAD::ADFun<double> check_yes(ax, az);
// checkpointing should use fewer operations
ok &= check_not.size_var() > check_yes.size_var();
// this does not really save space because f and g are only used once
ok &= check_not.size_var() <= check_yes.size_var()
+ f_fun.size_var() + g_fun.size_var();
// compare forward mode results for orders 0, 1, 2
size_t q1 = 3; // order_up + 1
CPPAD_TESTVECTOR(double) x_q(nx*q1), z_not(nz*q1), z_yes(nz*q1);
for(size_t j = 0; j < nx; j++)
{ for(size_t k = 0; k < q1; k++)
x_q[ j * q1 + k ] = 1.0 / double(q1 - k);
}
z_not = check_not.Forward(q1-1, x_q);
z_yes = check_yes.Forward(q1-1, x_q);
for(size_t i = 0; i < nz; i++)
{ for(size_t k = 0; k < q1; k++)
{ double zik_not = z_not[ i * q1 + k];
double zik_yes = z_yes[ i * q1 + k];
ok &= NearEqual(zik_not, zik_yes, eps99, eps99);
}
}
// compare reverse mode results for orders 0, 1, 2
CPPAD_TESTVECTOR(double) w(nz*q1), dw_not(nx*q1), dw_yes(nx*q1);
for(size_t i = 0; i < nz * q1; i++)
w[i] = 1.0 / double(i + 1);
dw_not = check_not.Reverse(q1, w);
dw_yes = check_yes.Reverse(q1, w);
for(size_t j = 0; j < nx; j++)
{ for(size_t k = 0; k < q1; k++)
{ double dwjk_not = dw_not[ j * q1 + k];
double dwjk_yes = dw_yes[ j * q1 + k];
ok &= NearEqual(dwjk_not, dwjk_yes, eps99, eps99);
}
}
// compare Jacobian sparsity patterns
CppAD::sparse_rc<size_vector> pattern_in, pattern_not, pattern_yes;
pattern_in.resize(nx, nx, nx);
for(size_t k = 0; k < nx; ++k)
pattern_in.set(k, k, k);
bool transpose = false;
bool dependency = false;
internal_bool = false;
// for_jac_sparsity (not internal_bool is false)
check_not.for_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_not
);
pattern_in.resize(nz, nz, nz);
for(size_t k = 0; k < nz; ++k)
pattern_in.set(k, k, k);
// forward and reverse Jacobian sparsity should give same answer
check_yes.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_yes
);
ok &= equal(pattern_not, pattern_yes );
// compare Hessian sparsity patterns
CPPAD_TESTVECTOR(bool) select_x(nx), select_z(nz);
for(size_t j = 0; j < nx; ++j)
select_x[j] = true;
for(size_t i = 0; i < nz; ++i)
select_z[i] = true;
transpose = false;
// Reverse should give same results as forward because
// previous for_jac_sparsity used identity for pattern_in.
// Note that internal_bool must be same as in call to for_sparse_jac.
check_not.rev_hes_sparsity(
select_z, transpose, internal_bool, pattern_yes
);
// internal_bool need not be the same during a call to for_hes_sparsity
internal_bool = ! internal_bool;
check_yes.for_hes_sparsity(
select_x, select_z, internal_bool, pattern_not
);
ok &= equal(pattern_not, pattern_yes);
//
return ok;
}
Input File: example/chkpoint_two/compare.cpp