|
Prev
| Next
|
|
|
|
|
|
chkpoint_two_base2ad.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Checkpointing With base2ad: Example and Test
# include <cppad/cppad.hpp>
namespace {
using CppAD::AD;
typedef CPPAD_TESTVECTOR(AD<double>) ADVector;
typedef CPPAD_TESTVECTOR(size_t) size_vector;
// f(y) = ( 3*y[0], 3*y[1] )
void f_algo(const ADVector& y, ADVector& z)
{ z[0] = 0.0;
z[1] = 0.0;
for(size_t k = 0; k < 3; k++)
{ z[0] += y[0];
z[1] += y[1];
}
return;
}
// g(x) = ( x[0]^3, x[1]^3 )
void g_algo(const ADVector& x, ADVector& y)
{ y[0] = 1.0;
y[1] = 1.0;
for(size_t k = 0; k < 3; k++)
{ y[0] *= x[0];
y[1] *= x[1];
}
return;
}
}
bool base2ad(void)
{ bool ok = true;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// AD vectors holding x, y, and z values
size_t nx = 2, ny = 2, nz = 2;
ADVector ax(nx), ay(ny), az(nz);
// record the function g_fun(x)
for(size_t j = 0; j < nx; j++)
ax[j] = double(j + 1);
Independent(ax);
g_algo(ax, ay);
CppAD::ADFun<double> g_fun(ax, ay);
// record the function f_fun(y)
Independent(ay);
f_algo(ay, az);
CppAD::ADFun<double> f_fun(ay, az);
// create checkpoint versions of f and g
bool internal_bool = true;
bool use_hes_sparsity = true;
bool use_base2ad = true;
bool use_in_parallel = false;
CppAD::chkpoint_two<double> f_chk(f_fun, "f_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
CppAD::chkpoint_two<double> g_chk(g_fun, "g_chk",
internal_bool, use_hes_sparsity, use_base2ad, use_in_parallel
);
// Record a version of z = f[g(x)] = h(x) with checkpointing
// h(x) = [ 3*x[0]^3 , 3*x[1]^3 ]
Independent(ax);
g_chk(ax, ay);
f_chk(ay, az);
CppAD::ADFun<double> h_fun(ax, az);
// Use base2ad to create and AD<double> verison of h
CppAD::ADFun< AD<double>, double> ah_fun = h_fun.base2ad();
// start recording AD<Base> operations
Independent(ax);
// record evaluate derivative of h_0 (x)
az = ah_fun.Forward(0, ax);
ADVector aw(nz), adw(nx);
aw[0] = 1.0;
for(size_t i = 1; i < nz; ++i)
aw[i] = 0.0;
adw = ah_fun.Reverse(1, aw);
// k(x) = h_0 '(x) = [ 9*x[0]^2 , 0.0 ]
CppAD::ADFun<double> k_fun(ax, adw);
// Evaluate the Jacobian of k(x)
CPPAD_TESTVECTOR(double) x(nx);
for(size_t j = 0; j < nx; ++j)
x[j] = 2.0 + double(nx - j);
CPPAD_TESTVECTOR(double) J = k_fun.Jacobian(x);
// check result
for(size_t i = 0; i < nz; ++i)
{ for(size_t j = 0; j < nx; ++j)
{ double Jij = J[i * nx + j];
if( i == 0 && j == 0 )
{ double check = 18.0 * x[0];
ok &= CppAD::NearEqual(Jij, check, eps99, eps99);
}
else
ok &= Jij == 0.0;
}
}
return ok;
}
Input File: example/chkpoint_two/base2ad.cpp