@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Get Started Checkpointing: Example and Test
Purpose
Break a large computation into pieces and only store values at the
interface of the pieces.
In actual applications, there may many uses of each function
and many more functions.
f
The function @(@
f : \B{R}^2 \rightarrow \B{R}^2
@)@
is defined by
@[@
f(y) = \left( \begin{array}{c}
y_0 + y_0 + y_0
\\
y_1 + y_1 + y_1
\end{array} \right)
@]@
g
The function @(@
g : \B{R}^2 \rightarrow \B{R}^2
@)@
defined by
@[@
g(x) = \left( \begin{array}{c}
x_0 \cdot x_0 \cdot x_0
\\
x_1 \cdot x_1 \cdot x_1
\end{array} \right)
@]@
f[g(x)]
The function @(@
f[g(x)]
@)@ is given by
@[@
f[g(x)]
=
f \left[ \begin{array}{c}
x_0^3 \\
x_1^3
\end{array} \right]
=
\left[ \begin{array}{c}
3 x_0^3 \\
3 x_1^3
\end{array} \right]
@]@