7#ifndef __IPNLPBOUNDSREMOVER_HPP__
8#define __IPNLPBOUNDSREMOVER_HPP__
33 bool allow_twosided_inequalities =
false
48 const std::string& prefix
51 return nlp_->ProcessOptions(options, prefix);
111 return nlp_->GetWarmStartIterate(warm_start_iterate);
122 return nlp_->Eval_f(x, f);
130 return nlp_->Eval_grad_f(x, g_f);
138 return nlp_->Eval_c(x, c);
146 return nlp_->Eval_jac_c(x, jac_c);
192 Number regularization_size,
200 return nlp_->IntermediateCallBack(mode, iter, obj_value, inf_pr, inf_du, mu, d_norm, regularization_size,
201 alpha_du, alpha_pr, ls_trials, ip_data, ip_cq);
223 nlp_->GetQuasiNewtonApproximationSpaces(approx_space, P_approx);
AlgorithmMode
enum to indicate the mode in which the algorithm is
Class for all IPOPT specific calculated quantities.
Class to organize all the data required by the algorithm.
Specialized CompoundVector class specifically for the algorithm iterates.
This is an adapter for an NLP that converts variable bound constraints to inequality constraints.
void operator=(const NLPBoundsRemover &)
Default Assignment Operator.
virtual void GetQuasiNewtonApproximationSpaces(SmartPtr< VectorSpace > &approx_space, SmartPtr< Matrix > &P_approx)
Method for obtaining the subspace in which the limited-memory Hessian approximation should be done.
virtual bool Eval_c(const Vector &x, Vector &c)
bool allow_twosided_inequalities_
Flag indicating whether twosided inequality constraints are allowed.
virtual void FinalizeSolution(SolverReturn status, const Vector &x, const Vector &z_L, const Vector &z_U, const Vector &c, const Vector &d, const Vector &y_c, const Vector &y_d, Number obj_value, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called at the very end of the optimization.
NLPBoundsRemover(NLP &nlp, bool allow_twosided_inequalities=false)
The constructor is given the NLP of which the bounds are to be replaced by inequality constraints.
virtual bool Eval_grad_f(const Vector &x, Vector &g_f)
virtual bool Eval_jac_c(const Vector &x, Matrix &jac_c)
virtual bool Eval_f(const Vector &x, Number &f)
SmartPtr< NLP > nlp()
Accessor method to the original NLP.
NLPBoundsRemover(const NLPBoundsRemover &)
Copy Constructor.
SmartPtr< const Matrix > Px_u_orig_
Pointer to the expansion matrix for the upper x bounds.
virtual bool ProcessOptions(const OptionsList &options, const std::string &prefix)
Overload if you want the chance to process options or parameters that may be specific to the NLP.
NLPBoundsRemover()
Default Constructor.
virtual bool Eval_d(const Vector &x, Vector &d)
virtual bool IntermediateCallBack(AlgorithmMode mode, Index iter, Number obj_value, Number inf_pr, Number inf_du, Number mu, Number d_norm, Number regularization_size, Number alpha_du, Number alpha_pr, Index ls_trials, const IpoptData *ip_data, IpoptCalculatedQuantities *ip_cq)
This method is called once per iteration, after the iteration summary output has been printed.
virtual bool GetBoundsInformation(const Matrix &Px_L, Vector &x_L, const Matrix &Px_U, Vector &x_U, const Matrix &Pd_L, Vector &d_L, const Matrix &Pd_U, Vector &d_U)
Method for obtaining the bounds information.
virtual bool GetSpaces(SmartPtr< const VectorSpace > &x_space, SmartPtr< const VectorSpace > &c_space, SmartPtr< const VectorSpace > &d_space, SmartPtr< const VectorSpace > &x_l_space, SmartPtr< const MatrixSpace > &px_l_space, SmartPtr< const VectorSpace > &x_u_space, SmartPtr< const MatrixSpace > &px_u_space, SmartPtr< const VectorSpace > &d_l_space, SmartPtr< const MatrixSpace > &pd_l_space, SmartPtr< const VectorSpace > &d_u_space, SmartPtr< const MatrixSpace > &pd_u_space, SmartPtr< const MatrixSpace > &Jac_c_space, SmartPtr< const MatrixSpace > &Jac_d_space, SmartPtr< const SymMatrixSpace > &Hess_lagrangian_space)
Method for creating the derived vector / matrix types.
virtual bool Eval_jac_d(const Vector &x, Matrix &jac_d)
virtual bool Eval_h(const Vector &x, Number obj_factor, const Vector &yc, const Vector &yd, SymMatrix &h)
SmartPtr< const Matrix > Px_l_orig_
Pointer to the expansion matrix for the lower x bounds.
SmartPtr< NLP > nlp_
Pointer to the original NLP.
virtual bool GetStartingPoint(SmartPtr< Vector > x, bool need_x, SmartPtr< Vector > y_c, bool need_y_c, SmartPtr< Vector > y_d, bool need_y_d, SmartPtr< Vector > z_L, bool need_z_L, SmartPtr< Vector > z_U, bool need_z_U)
Method for obtaining the starting point for all the iterates.
SmartPtr< const VectorSpace > d_space_orig_
Pointer to the original d space.
virtual void GetScalingParameters(const SmartPtr< const VectorSpace > x_space, const SmartPtr< const VectorSpace > c_space, const SmartPtr< const VectorSpace > d_space, Number &obj_scaling, SmartPtr< Vector > &x_scaling, SmartPtr< Vector > &c_scaling, SmartPtr< Vector > &d_scaling) const
Routines to get the scaling parameters.
virtual bool GetWarmStartIterate(IteratesVector &warm_start_iterate)
Method for obtaining an entire iterate as a warmstart point.
virtual ~NLPBoundsRemover()
Destructor.
This class stores a list of user set options.
Template class for Smart Pointers.
This is the base class for all derived symmetric matrix types.
This file contains a base class for all exceptions and a set of macros to help with exceptions.
SolverReturn
enum for the return from the optimize algorithm
ipindex Index
Type of all indices of vectors, matrices etc.
ipnumber Number
Type of all numbers.