|
Prev
| Next
|
|
|
|
|
|
sign.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Sign Function: Example and Test
# include <cppad/cppad.hpp>
bool sign(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
// create f: x -> y where f(x) = sign(x)
size_t n = 1;
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ax(n), ay(m);
ax[0] = 0.;
CppAD::Independent(ax);
ay[0] = sign(ax[0]);
CppAD::ADFun<double> f(ax, ay);
// check value during recording
ok &= (ay[0] == 0.);
// use f(x) to evaluate the sign function and its derivatives
CPPAD_TESTVECTOR(double) x(n), y(m), dx(n), dy(m), w(m), dw(n);
dx[0] = 1.;
w[0] = 1.;
//
x[0] = 2.;
y = f.Forward(0, x);
ok &= (y[0] == 1.);
dy = f.Forward(1, dx);
ok &= (dy[0] == 0.);
dw = f.Reverse(1, w);
ok &= (dw[0] == 0.);
//
x[0] = 0.;
y = f.Forward(0, x);
ok &= (y[0] == 0.);
dy = f.Forward(1, dx);
ok &= (dy[0] == 0.);
dw = f.Reverse(1, w);
ok &= (dw[0] == 0.);
//
x[0] = -2.;
y = f.Forward(0, x);
ok &= (y[0] == -1.);
dy = f.Forward(1, dx);
ok &= (dy[0] == 0.);
dw = f.Reverse(1, w);
ok &= (dw[0] == 0.);
// use a VecAD<Base>::reference object with sign
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = 2.;
AD<double> result = sign(v[zero]);
ok &= (result == 1.);
return ok;
}
Input File: example/general/sign.cpp