@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Runge45: Example and Test
Define
@(@
X : \B{R} \times \B{R} \rightarrow \B{R}^n
@)@ by
@[@
X_j (b, t) = b \left( \sum_{k=0}^j t^k / k ! \right)
@]@
for @(@
j = 0 , \ldots , n-1
@)@.
It follows that
@[@
\begin{array}{rcl}
X_j (b, 0) & = & b \\
\partial_t X_j (b, t) & = & b \left( \sum_{k=0}^{j-1} t^k / k ! \right) \\
\partial_t X_j (b, t) & = & \left\{ \begin{array}{ll}
0 & {\rm if} \; j = 0 \\
X_{j-1} (b, t) & {\rm otherwise}
\end{array} \right.
\end{array}
@]@
For a fixed @(@
t_f
@)@,
we can use Runge45
to define
@(@
f : \B{R} \rightarrow \B{R}^n
@)@ as an approximation for
@(@
f(b) = X(b, t_f )
@)@.
We can then compute @(@
f^{(1)} (b)
@)@ which is an approximation for
@[@
\partial_b X(b, t_f ) = \sum_{k=0}^j t_f^k / k !
@]@
# include <cstddef> // for size_t# include <limits> // for machine epsilon# include <cppad/cppad.hpp> // for all of CppADnamespace {
template <class Scalar>
class Fun {
public:
// constructorFun(void)
{ }
// set return value to X'(t)
void Ode(
const Scalar &t,
constCPPAD_TESTVECTOR(Scalar) &x,
CPPAD_TESTVECTOR(Scalar) &f)
{ size_t n = x.size();
f[0] = 0.;
for(size_t k = 1; k < n; k++)
f[k] = x[k-1];
}
};
}
bool runge_45(void)
{ typedef CppAD::AD<double> Scalar;
using CppAD::NearEqual;
bool ok = true; // initial return value
size_t j; // temporary indices
size_t n = 5; // number components in X(t) and order of method
size_t M = 2; // number of Runge45 steps in [ti, tf]
Scalar ad_ti = 0.; // initial time
Scalar ad_tf = 2.; // final time// value of independent variable at which to record operationsCPPAD_TESTVECTOR(Scalar) ad_b(1);
ad_b[0] = 1.;
// declare b to be the independent variableIndependent(ad_b);
// object to evaluate ODE
Fun<Scalar> ad_F;
// xi = X(0)CPPAD_TESTVECTOR(Scalar) ad_xi(n);
for(j = 0; j < n; j++)
ad_xi[j] = ad_b[0];
// compute Runge45 approximation for X(tf)CPPAD_TESTVECTOR(Scalar) ad_xf(n), ad_e(n);
ad_xf = CppAD::Runge45(ad_F, M, ad_ti, ad_tf, ad_xi, ad_e);
// stop recording and use it to create f : b -> xf
CppAD::ADFun<double> f(ad_b, ad_xf);
// evaluate f(b)CPPAD_TESTVECTOR(double) b(1);
CPPAD_TESTVECTOR(double) xf(n);
b[0] = 1.;
xf = f.Forward(0, b);
// check that f(b) = X(b, tf)
double tf = Value(ad_tf);
double term = 1;
double sum = 0;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
for(j = 0; j < n; j++)
{ sum += term;
ok &= NearEqual(xf[j], b[0] * sum, eps, eps);
term *= tf;
term /= double(j+1);
}
// evalute f'(b)CPPAD_TESTVECTOR(double) d_xf(n);
d_xf = f.Jacobian(b);
// check that f'(b) = partial of X(b, tf) w.r.t b
term = 1;
sum = 0;
for(j = 0; j < n; j++)
{ sum += term;
ok &= NearEqual(d_xf[j], sum, eps, eps);
term *= tf;
term /= double(j+1);
}
return ok;
}