@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Runge45: Example and Test
Define
@(@
X : \B{R} \rightarrow \B{R}^n
@)@ by
@[@
X_i (t) = t^{i+1}
@]@
for @(@
i = 1 , \ldots , n-1
@)@.
It follows that
@[@
\begin{array}{rclr}
X_i(0) & = & 0 & {\rm for \; all \;} i \\
X_i ' (t) & = & 1 & {\rm if \;} i = 0 \\
X_i '(t) & = & (i+1) t^i = (i+1) X_{i-1} (t) & {\rm if \;} i > 0
\end{array}
@]@
The example tests Runge45 using the relations above:
# include <cstddef> // for size_t# include <cppad/utility/near_equal.hpp> // for CppAD::NearEqual# include <cppad/utility/vector.hpp> // for CppAD::vector# include <cppad/utility/runge_45.hpp> // for CppAD::Runge45// Runge45 requires fabs to be defined (not std::fabs)// <cppad/cppad.hpp> defines this for doubles, but runge_45.hpp does not.# include <math.h> // for fabs without std in frontnamespace {
class Fun {
public:
// constructorFun(bool use_x_) : use_x(use_x_)
{ }
// set f = x'(t)
void Ode(
const double &t,
const CppAD::vector<double> &x,
CppAD::vector<double> &f)
{ size_t n = x.size();
double ti = 1.;
f[0] = 1.;
size_t i;
for(i = 1; i < n; i++)
{ ti *= t;
if( use_x )
f[i] = double(i+1) * x[i-1];
else
f[i] = double(i+1) * ti;
}
}
private:
const bool use_x;
};
}
bool runge_45_1(void)
{ bool ok = true; // initial return value
size_t i; // temporary indicesusing CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
size_t n = 5; // number components in X(t) and order of method
size_t M = 2; // number of Runge45 steps in [ti, tf]
double ti = 0.; // initial time
double tf = 2.; // final time// xi = X(0)
CppAD::vector<double> xi(n);
for(i = 0; i <n; i++)
xi[i] = 0.;
size_t use_x;
for( use_x = 0; use_x < 2; use_x++)
{ // function object depends on value of use_x
Fun F(use_x > 0);
// compute Runge45 approximation for X(tf)
CppAD::vector<double> xf(n), e(n);
xf = CppAD::Runge45(F, M, ti, tf, xi, e);
double check = tf;
for(i = 0; i < n; i++)
{ // check that error is always positive
ok &= (e[i] >= 0.);
// 5th order method is exact for i < 5if( i < 5 ) ok &=
NearEqual(xf[i], check, eps99, eps99);
// 4th order method is exact for i < 4if( i < 4 )
ok &= (e[i] <= eps99);
// check value for next i
check *= tf;
}
}
return ok;
}