|
Prev
| Next
|
|
|
|
|
|
reverse_three.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Third Order Reverse Mode: Example and Test
Taylor Coefficients
@[@
\begin{array}{rcl}
X(t) & = & x^{(0)} + x^{(1)} t + x^{(2)} t^2
\\
X^{(1)} (t) & = & x^{(1)} + 2 x^{(2)} t
\\
X^{(2)} (t) & = & 2 x^{(2)}
\end{array}
@]@Thus, we need to be careful to properly account for the fact that
@(@
X^{(2)} (0) = 2 x^{(2)}
@)@
(and similarly @(@
Y^{(2)} (0) = 2 y^{(2)}
@)@).
# include <cppad/cppad.hpp>
namespace { // ----------------------------------------------------------
// define the template function cases<Vector> in empty namespace
template <class Vector>
bool cases(void)
{ bool ok = true;
double eps = 10. * CppAD::numeric_limits<double>::epsilon();
using CppAD::AD;
using CppAD::NearEqual;
// domain space vector
size_t n = 2;
CPPAD_TESTVECTOR(AD<double>) X(n);
X[0] = 0.;
X[1] = 1.;
// declare independent variables and start recording
CppAD::Independent(X);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = X[0] * X[1];
// create f : X -> Y and stop recording
CppAD::ADFun<double> f(X, Y);
// define x^0 and compute y^0 using user zero order forward
Vector x0(n), y0(m);
x0[0] = 2.;
x0[1] = 3.;
y0 = f.Forward(0, x0);
// y^0 = F(x^0)
double check;
check = x0[0] * x0[1];
ok &= NearEqual(y0[0] , check, eps, eps);
// define x^1 and compute y^1 using first order forward mode
Vector x1(n), y1(m);
x1[0] = 4.;
x1[1] = 5.;
y1 = f.Forward(1, x1);
// Y^1 (x) = partial_t F( x^0 + x^1 * t )
// y^1 = Y^1 (0)
check = x1[0] * x0[1] + x0[0] * x1[1];
ok &= NearEqual(y1[0], check, eps, eps);
// define x^2 and compute y^2 using second order forward mode
Vector x2(n), y2(m);
x2[0] = 6.;
x2[1] = 7.;
y2 = f.Forward(2, x2);
// Y^2 (x) = partial_tt F( x^0 + x^1 * t + x^2 * t^2 )
// y^2 = (1/2) * Y^2 (0)
check = x2[0] * x0[1] + x1[0] * x1[1] + x0[0] * x2[1];
ok &= NearEqual(y2[0], check, eps, eps);
// W(x) = Y^0 (x) + 2 * Y^1 (x) + 3 * (1/2) * Y^2 (x)
size_t p = 3;
Vector dw(n*p), w(m*p);
w[0] = 1.;
w[1] = 2.;
w[2] = 3.;
dw = f.Reverse(p, w);
// check partial w.r.t x^0_0 of W(x)
check = x0[1] + 2. * x1[1] + 3. * x2[1];
ok &= NearEqual(dw[0*p+0], check, eps, eps);
// check partial w.r.t x^0_1 of W(x)
check = x0[0] + 2. * x1[0] + 3. * x2[0];
ok &= NearEqual(dw[1*p+0], check, eps, eps);
// check partial w.r.t x^1_0 of W(x)
check = 2. * x0[1] + 3. * x1[1];
ok &= NearEqual(dw[0*p+1], check, eps, eps);
// check partial w.r.t x^1_1 of W(x)
check = 2. * x0[0] + 3. * x1[0];
ok &= NearEqual(dw[1*p+1], check, eps, eps);
// check partial w.r.t x^2_0 of W(x)
check = 3. * x0[1];
ok &= NearEqual(dw[0*p+2], check, eps, eps);
// check partial w.r.t x^2_1 of W(x)
check = 3. * x0[0];
ok &= NearEqual(dw[1*p+2], check, eps, eps);
return ok;
}
} // End empty namespace
# include <vector>
# include <valarray>
bool reverse_three(void)
{ bool ok = true;
ok &= cases< CppAD::vector <double> >();
ok &= cases< std::vector <double> >();
ok &= cases< std::valarray <double> >();
return ok;
}
Input File: example/general/reverse_three.cpp