Loading [MathJax]/extensions/TeX/newcommand.js
Prev
Next
Index->
contents
reference
index
search
external
Up->
CppAD
ADFun
Reverse
reverse_any
rev_checkpoint.cpp
adfun-> record_adfun other_adfun drivers Forward Reverse sparsity_pattern sparse_derivative optimize FunCheck check_for_nan to_csrc
reverse-> reverse_one reverse_two reverse_any subgraph_reverse
reverse_any-> reverse_three.cpp rev_checkpoint.cpp
rev_checkpoint.cpp
Headings->
See Also
Purpose
Processing Steps
\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} } This is cppad-20221105 documentation . Here is a link to its
current documentation
.
Reverse Mode General Case (Checkpointing): Example and Test
See Also
checkpoint
Purpose
Break a large computation into pieces and only store values at the
interface of the pieces (this is much easier to do using checkpoint
).
In actual applications, there may be many functions, but
for this example there are only two.
The functions
F : \B{R}^2 \rightarrow \B{R}^2
and
G : \B{R}^2 \rightarrow \B{R}^2
defined by
F(x) = \left( \begin{array}{c} x_0 x_1 \\ x_1 - x_0 \end{array} \right)
\; , \;
G(y) = \left( \begin{array}{c} y_0 - y_1 \\ y_1 y_0 \end{array} \right)
Processing Steps
We apply reverse mode to compute the derivative of
H : \B{R}^2 \rightarrow \B{R}
is defined by
\begin{array}{rcl}
H(x)
& = & G_0 [ F(x) ] + G_1 [ F(x) ]
\\
& = & x_0 x_1 - ( x_1 - x_0 ) + x_0 x_1 ( x_1 - x_0 )
\\
& = & x_0 x_1 ( 1 - x_0 + x_1 ) - x_1 + x_0
\end{array}
Given the zero and first order Taylor coefficients
x^{(0)}
and
x^{(1)}
,
we use
X(t)
,
Y(t)
and
Z(t)
for the corresponding functions; i.e.,
\begin{array}{rcl}
X(t) & = & x^{(0)} + x^{(1)} t
\\
Y(t) & = & F[X(t)] = y^{(0)} + y^{(1)} t + O(t^2)
\\
Z(t) & = & G \{ F [ X(t) ] \} = z^{(0)} + z^{(1)} t + O(t^2)
\\
h^{(0)} & = & z^{(0)}_0 + z^{(0)}_1
\\
h^{(1)} & = & z^{(1)}_0 + z^{(1)}_1
\end{array}
Here are the processing steps:
Use forward mode on
F(x)
to compute
y^{(0)}
and
y^{(1)}
.
Free some, or all, of the memory corresponding to
F(x)
.
Use forward mode on
G(y)
to compute
z^{(0)}
and
z^{(1)}
Use reverse mode on
G(y)
to compute the derivative of
h^{(1)}
with respect to
y^{(0)}
and
y^{(1)}
.
Free all the memory corresponding to
G(y)
.
Use reverse mode on
F(x)
to compute the derivative of
h^{(1)}
with respect to
x^{(0)}
and
x^{(1)}
.
This uses the following relations:
\begin{array}{rcl}
\partial_{x(0)} h^{(1)} [ x^{(0)} , x^{(1)} ]
& = &
\partial_{y(0)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(0)} y^{(0)} [ x^{(0)} , x^{(1)} ]
\\
& + &
\partial_{y(1)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(0)} y^{(1)} [ x^{(0)} , x^{(1)} ]
\\
\partial_{x(1)} h^{(1)} [ x^{(0)} , x^{(1)} ]
& = &
\partial_{y(0)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(1)} y^{(0)} [ x^{(0)} , x^{(1)} ]
\\
& + &
\partial_{y(1)} h^{(1)} [ y^{(0)} , y^{(1)} ]
\partial_{x(1)} y^{(1)} [ x^{(0)} , x^{(1)} ]
\end{array}
where
\partial_{x(0)}
denotes the partial with respect
to
x^{(0)}
.
# include <cppad/cppad.hpp>
namespace {
template < class Vector >
Vector F ( const Vector& x)
{ Vector y ( 2 );
y[ 0 ] = x[ 0 ] * x[ 1 ];
y[ 1 ] = x[ 1 ] - x[ 0 ];
return y;
}
template < class Vector >
Vector G ( const Vector& y)
{ Vector z ( 2 );
z[ 0 ] = y[ 0 ] - y[ 1 ];
z[ 1 ] = y[ 1 ] * y[ 0 ];
return z;
}
}
namespace {
bool rev_checkpoint_case ( bool free_all)
{ bool ok = true ;
double eps = 10 . * CppAD:: numeric_limits< double >:: epsilon ();
using CppAD:: AD;
using CppAD:: NearEqual;
CppAD:: ADFun<double> f, g, empty;
// specify the Taylor coefficients for X(t)
size_t n = 2 ;
CPPAD_TESTVECTOR ( double ) x0 ( n), x1 ( n);
x0[ 0 ] = 1 .; x0[ 1 ] = 2 .;
x1[ 0 ] = 3 .; x1[ 1 ] = 4 .;
// record the function F(x)
CPPAD_TESTVECTOR ( AD< double >) X ( n), Y ( n);
size_t i;
for ( i = 0 ; i < n; i++)
X[ i] = x0[ i];
CppAD:: Independent ( X);
Y = F ( X);
f. Dependent ( X, Y);
// a fucntion object with an almost empty operation sequence
CppAD:: Independent ( X);
empty. Dependent ( X, X);
// compute the Taylor coefficients for Y(t)
CPPAD_TESTVECTOR ( double ) y0 ( n), y1 ( n);
y0 = f. Forward ( 0 , x0);
y1 = f. Forward ( 1 , x1);
if ( free_all )
f = empty;
else
{ // free all the Taylor coefficients stored in f
f. capacity_order ( 0 );
}
// record the function G(x)
CPPAD_TESTVECTOR ( AD< double >) Z ( n);
CppAD:: Independent ( Y);
Z = G ( Y);
g. Dependent ( Y, Z);
// compute the Taylor coefficients for Z(t)
CPPAD_TESTVECTOR ( double ) z0 ( n), z1 ( n);
z0 = g. Forward ( 0 , y0);
z1 = g. Forward ( 1 , y1);
// check zero order Taylor coefficient for h^0 = z_0^0 + z_1^0
double check = x0[ 0 ] * x0[ 1 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]) - x0[ 1 ] + x0[ 0 ];
double h0 = z0[ 0 ] + z0[ 1 ];
ok &= NearEqual ( h0, check, eps, eps);
// check first order Taylor coefficient h^1
check = x0[ 0 ] * x0[ 1 ] * (- x1[ 0 ] + x1[ 1 ]) - x1[ 1 ] + x1[ 0 ];
check += x1[ 0 ] * x0[ 1 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]);
check += x0[ 0 ] * x1[ 1 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]);
double h1 = z1[ 0 ] + z1[ 1 ];
ok &= NearEqual ( h1, check, eps, eps);
// compute the derivative with respect to y^0 and y^0 of h^1
size_t p = 2 ;
CPPAD_TESTVECTOR ( double ) w ( n* p), dw ( n* p);
w[ 0 * p+ 0 ] = 0 .; // coefficient for z_0^0
w[ 0 * p+ 1 ] = 1 .; // coefficient for z_0^1
w[ 1 * p+ 0 ] = 0 .; // coefficient for z_1^0
w[ 1 * p+ 1 ] = 1 .; // coefficient for z_1^1
dw = g. Reverse ( p, w);
// We are done using g, so we can free its memory.
g = empty;
// We need to use f next.
if ( free_all )
{ // we must again record the operation sequence for F(x)
CppAD:: Independent ( X);
Y = F ( X);
f. Dependent ( X, Y);
}
// now recompute the Taylor coefficients corresponding to F(x)
// (we already know the result; i.e., y0 and y1).
f. Forward ( 0 , x0);
f. Forward ( 1 , x1);
// compute the derivative with respect to x^0 and x^0 of
// h^1 = z_0^1 + z_1^1
CPPAD_TESTVECTOR ( double ) dv ( n* p);
dv = f. Reverse ( p, dw);
// check partial of h^1 w.r.t x^0_0
check = x0[ 1 ] * (- x1[ 0 ] + x1[ 1 ]);
check -= x1[ 0 ] * x0[ 1 ];
check += x1[ 1 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]) - x0[ 0 ] * x1[ 1 ];
ok &= NearEqual ( dv[ 0 * p+ 0 ], check, eps, eps);
// check partial of h^1 w.r.t x^0_1
check = x0[ 0 ] * (- x1[ 0 ] + x1[ 1 ]);
check += x1[ 0 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]) + x1[ 0 ] * x0[ 1 ];
check += x0[ 0 ] * x1[ 1 ];
ok &= NearEqual ( dv[ 1 * p+ 0 ], check, eps, eps);
// check partial of h^1 w.r.t x^1_0
check = 1 . - x0[ 0 ] * x0[ 1 ];
check += x0[ 1 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]);
ok &= NearEqual ( dv[ 0 * p+ 1 ], check, eps, eps);
// check partial of h^1 w.r.t x^1_1
check = x0[ 0 ] * x0[ 1 ] - 1 .;
check += x0[ 0 ] * ( 1 . - x0[ 0 ] + x0[ 1 ]);
ok &= NearEqual ( dv[ 1 * p+ 1 ], check, eps, eps);
return ok;
}
}
bool rev_checkpoint ( void )
{ bool ok = true ;
ok &= rev_checkpoint_case ( true );
ok &= rev_checkpoint_case ( false );
return ok;
}
Input File: example/general/rev_checkpoint.cpp