Purpose
In this example, we use AD< AD<double> > (level two taping),
the compute values of the function @(@
f : \B{R}^n \rightarrow \B{R}
@)@ where
@[@
f(x) = \frac{1}{2} \left( x_0^2 + \cdots + x_{n-1}^2 \right)
@]@
We then use AD<double> (level one taping) to compute
the directional derivative
@[@
f^{(1)} (x) * v = x_0 v_0 + \cdots + x_{n-1} v_{n-1}
@]@.
where @(@
v \in \B{R}^n
@)@.
We then use double (no taping) to compute
@[@
\frac{d}{dx} \left[ f^{(1)} (x) * v \right] = v
@]@
This is only meant as an example of multiple levels of taping.
The example hes_times_dir.cpp
computes the same value more
efficiently by using the identity:
@[@
\frac{d}{dx} \left[ f^{(1)} (x) * v \right] = f^{(2)} (x) * v
@]@
The example mul_level_adolc.cpp
computes the same values using
Adolc's type adouble and CppAD's type AD<adouble>.
# include <cppad/cppad.hpp>
namespace {
// f(x) = |x|^2 / 2 = .5 * ( x[0]^2 + ... + x[n-1]^2 )template <class Type>
Type f(constCPPAD_TESTVECTOR(Type)& x)
{ Type sum;
sum = 0.;
size_t i = size_t(x.size());
for(i = 0; i < size_t(x.size()); i++)
sum += x[i] * x[i];
return .5 * sum;
}
}
bool mul_level(void)
{ bool ok = true; // initialize test resulttypedef CppAD::AD<double> a1type; // for one level of tapingtypedef CppAD::AD<a1type> a2type; // for two levels of taping
size_t n = 5; // dimension for example
size_t j; // a temporary index variable// 10 times machine epsilon
double eps = 10. * std::numeric_limits<double>::epsilon();
CPPAD_TESTVECTOR(double) x(n);
CPPAD_TESTVECTOR(a1type) a1x(n), a1v(n), a1dy(1) ;
CPPAD_TESTVECTOR(a2type) a2x(n), a2y(1);
// Values for the independent variables while taping the function f(x)for(j = 0; j < n; j++)
a2x[j] = a1x[j] = x[j] = double(j);
// Declare the independent variable for taping f(x)
CppAD::Independent(a2x);
// Use AD< AD<double> > to tape the evaluation of f(x)
a2y[0] = f(a2x);
// Declare a1f as the corresponding ADFun< AD<double> >// (make sure we do not run zero order forward during constructor)
CppAD::ADFun<a1type> a1f;
a1f.Dependent(a2x, a2y);
// Values for the independent variables while taping f'(x) * v// Declare the independent variable for taping f'(x) * v// (Note we did not have to tape the creationg of a1f.)
CppAD::Independent(a1x);
// set the argument value x for computing f'(x) * v
a1f.Forward(0, a1x);
// compute f'(x) * vfor(j = 0; j < n; j++)
a1v[j] = double(n - j);
a1dy = a1f.Forward(1, a1v);
// declare g as ADFun<double> function corresponding to f'(x) * v
CppAD::ADFun<double> g;
g.Dependent(a1x, a1dy);
// optimize out operations not necessary for function f'(x) * v
g.optimize();
// Evaluate f'(x) * v
g.Forward(0, x);
// compute the d/dx of f'(x) * v = f''(x) * v = vCPPAD_TESTVECTOR(double) w(1);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = g.Reverse(1, w);
for(j = 0; j < n; j++)
ok &= CppAD::NearEqual(dw[j], a1v[j], eps, eps);
return ok;
}