Purpose
This is a realistic example using base2ad
to create
an
AD<Base>
function from an
Base
function.
The function represents an ordinary differential equation.
It is differentiated with respect to
its variables
.
These derivatives are used by the taylor_ode
method.
This solution is then differentiated with respect to
the functions dynamic parameters
.
ODE
For this example the function
@(@
y : \B{R} \times \B{R}^n \rightarrow \B{R}^n
@)@ is defined by
@(@
y(0, x) = 0
@)@ and
@(@
\partial_t y(t, x) = g(y, x)
@)@ where
@(@
g : \B{R}^n \times \B{R}^n \rightarrow \B{R}^n
@)@ is defined by
@[@
g(y, x) =
\left( \begin{array}{c}
x_0 \\
x_1 y_0 \\
\vdots \\
x_{n-1} y_{n-2}
\end{array} \right)
@]@
ODE Solution
The solution for this example can be calculated by
starting with the first row and then using the solution
for the first row to solve the second and so on.
Doing this we obtain
@[@
y(t, x ) =
\left( \begin{array}{c}
x_0 t \\
x_1 x_0 t^2 / 2 \\
\vdots \\
x_{n-1} x_{n-2} \ldots x_0 t^n / n !
\end{array} \right)
@]@
Derivative of ODE Solution
Differentiating the solution above,
with respect to the parameter vector @(@
x
@)@,
we notice that
@[@
\partial_x y(t, x ) =
\left( \begin{array}{cccc}
y_0 (t,x) / x_0 & 0 & \cdots & 0 \\
y_1 (t,x) / x_0 & y_1 (t,x) / x_1 & 0 & \vdots \\
\vdots & \vdots & \ddots & 0 \\
y_{n-1} (t,x) / x_0 & y_{n-1} (t,x) / x_1 & \cdots & y_{n-1} (t,x) / x_{n-1}
\end{array} \right)
@]@
Taylor's Method Using AD
We define the function @(@
z(t, x)
@)@ by the equation
@[@
z ( t , x ) = g[ y ( t , x ), x ]
@]@
see taylor_ode
for the method used to compute the
Taylor coefficients w.r.t @(@
t
@)@ of @(@
y(t, x)
@)@.
# include <cppad/cppad.hpp>
// =========================================================================namespace { // BEGIN empty namespacetypedef CppAD::AD<double> a_double;
typedefCPPAD_TESTVECTOR(double) d_vector;
typedefCPPAD_TESTVECTOR(a_double) a_vector;
typedef CppAD::ADFun<double> fun_double;
typedef CppAD::ADFun<a_double, double> afun_double;
// -------------------------------------------------------------------------// class definition for C++ function object that defines ODEclass Ode {
private:
// copy of x that is set by constructor and used by g(y)
a_vector x_;
public:
// constructorOde(const a_vector& x) : x_(x)
{ }
// the function g(y) given the parameter vector x
a_vector operator() (const a_vector& y) const
{ size_t n = y.size();
a_vector g(n);
g[0] = x_[0];
for(size_t i = 1; i < n; i++)
g[i] = x_[i] * y[i-1];
//return g;
}
};
// -------------------------------------------------------------------------// Routine that uses Taylor's method to solve ordinary differential equaitons
a_vector taylor_ode(
afun_double& fun_g , // function that defines the ODE
size_t order , // order of Taylor's method used
size_t nstep , // number of steps to takeconst a_double& dt , // Delta t for each stepconst a_vector& y_ini) // y(t) at the initial time
{
// number of variables in the ODE
size_t n = y_ini.size();
// initialize y
a_vector y = y_ini;
// loop with respect to each step of Taylors methodfor(size_t s = 0; s < nstep; s++)
{
// initialize
a_vector y_k = y;
a_double dt_k = a_double(1.0);
a_vector next = y;
for(size_t k = 0; k < order; k++)
{
// evaluate k-th order Taylor coefficient z^{(k)} (t)
a_vector z_k = fun_g.Forward(k, y_k);
// dt^{k+1}
dt_k *= dt;
// y^{(k+1)}for(size_t i = 0; i < n; i++)
{ // y^{(k+1)}
y_k[i] = z_k[i] / a_double(k + 1);
// add term for k+1 Taylor coefficient// to solution for next y
next[i] += y_k[i] * dt_k;
}
}
// take step
y = next;
}
return y;
}
} // END empty namespace// ==========================================================================// Routine that tests alogirhtmic differentiation of solutions computed// by the routine taylor_ode.
bool base2ad(void)
{ bool ok = true;
double eps = 100. * std::numeric_limits<double>::epsilon();
// number of components in differential equation
size_t n = 4;
// record function g(y, x)// with y as the independent variables and x as dynamic parameters
a_vector ay(n), ax(n);
for(size_t i = 0; i < n; i++)
ay[i] = ax[i] = double(i + 1);
CppAD::Independent(ay, ax);
// fun_g
Ode G(ax);
a_vector ag = G(ay);
fun_double fun_g(ay, ag);
// afun_g
afun_double afun_g( fun_g.base2ad() ); // differential equation// other arguments to taylor_ode
size_t order = n; // order of Taylor's method used
size_t nstep = 2; // number of steps to take
a_double adt = 1.; // Delta t for each step
a_vector ay_ini(n); // initial value of yfor(size_t i = 0; i < n; i++)
ay_ini[i] = 0.;
// declare x as independent variables
CppAD::Independent(ax);
// the independent variables if this function are// the dynamic parameters in afun_g
afun_g.new_dynamic(ax);
// integrate the differential equation
a_vector ay_final;
ay_final = taylor_ode(afun_g, order, nstep, adt, ay_ini);
// define differentiable fucntion object f(x) = y_final(x)// that computes its derivatives in double
CppAD::ADFun<double> fun_f(ax, ay_final);
// double version of ax
d_vector x(n);
for(size_t i = 0; i < n; i++)
x[i] = Value( ax[i] );
// check function values
double check = 1.;
double t = double(nstep) * Value(adt);
for(size_t i = 0; i < n; i++)
{ check *= x[i] * t / double(i + 1);
ok &= CppAD::NearEqual(Value(ay_final[i]), check, eps, eps);
}
// There appears to be a bug in g++ version 4.4.2 because it generates// a warning for the equivalent form// d_vector jac = fun_f.Jacobian(x);
d_vector jac ( fun_f.Jacobian(x) );
// check Jacobianfor(size_t i = 0; i < n; i++)
{ for(size_t j = 0; j < n; j++)
{ double jac_ij = jac[i * n + j];
if( i < j )
check = 0.;
else
check = Value( ay_final[i] ) / x[j];
ok &= CppAD::NearEqual(jac_ij, check, eps, eps);
}
}
return ok;
}