|
Prev
| Next
|
|
|
|
|
|
interp_retape.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Interpolation With Retaping: Example and Test
See Also
interp_onetape.cpp
# include <cppad/cppad.hpp>
# include <cassert>
# include <cmath>
namespace {
double ArgumentValue[] = {
.0 ,
.2 ,
.4 ,
.8 ,
1.
};
double FunctionValue[] = {
std::sin( ArgumentValue[0] ) ,
std::sin( ArgumentValue[1] ) ,
std::sin( ArgumentValue[2] ) ,
std::sin( ArgumentValue[3] ) ,
std::sin( ArgumentValue[4] )
};
size_t TableLength = 5;
size_t Index(const CppAD::AD<double> &x)
{ // determine the index j such that x is between
// ArgumentValue[j] and ArgumentValue[j+1]
static size_t j = 0;
while ( x < ArgumentValue[j] && j > 0 )
j--;
while ( x > ArgumentValue[j+1] && j < TableLength - 2)
j++;
// assert conditions that must be true given logic above
assert( j >= 0 && j < TableLength - 1 );
return j;
}
double Argument(const CppAD::AD<double> &x)
{ size_t j = Index(x);
return ArgumentValue[j];
}
double Function(const CppAD::AD<double> &x)
{ size_t j = Index(x);
return FunctionValue[j];
}
double Slope(const CppAD::AD<double> &x)
{ size_t j = Index(x);
double dx = ArgumentValue[j+1] - ArgumentValue[j];
double dy = FunctionValue[j+1] - FunctionValue[j];
return dy / dx;
}
}
bool interp_retape(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
CPPAD_TESTVECTOR(AD<double>) X(n);
// loop over argument values
size_t k;
for(k = 0; k < TableLength - 1; k++)
{
X[0] = .4 * ArgumentValue[k] + .6 * ArgumentValue[k+1];
// declare independent variables and start tape recording
// (use a different tape for each argument value)
CppAD::Independent(X);
// evaluate piecewise linear interpolant at X[0]
AD<double> A = Argument(X[0]);
AD<double> F = Function(X[0]);
AD<double> S = Slope(X[0]);
AD<double> I = F + (X[0] - A) * S;
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) Y(m);
Y[0] = I;
// create f: X -> Y and stop tape recording
CppAD::ADFun<double> f(X, Y);
// vectors for arguments to the function object f
CPPAD_TESTVECTOR(double) x(n); // argument values
CPPAD_TESTVECTOR(double) y(m); // function values
CPPAD_TESTVECTOR(double) dx(n); // differentials in x space
CPPAD_TESTVECTOR(double) dy(m); // differentials in y space
// to check function value we use the fact that X[0] is between
// ArgumentValue[k] and ArgumentValue[k+1]
double delta, check;
x[0] = Value(X[0]);
delta = ArgumentValue[k+1] - ArgumentValue[k];
check = FunctionValue[k+1] * (x[0]-ArgumentValue[k]) / delta
+ FunctionValue[k] * (ArgumentValue[k+1]-x[0]) / delta;
ok &= NearEqual(Y[0], check, eps99, eps99);
// evaluate partials w.r.t. x[0]
dx[0] = 1.;
dy = f.Forward(1, dx);
// check that the derivative is the slope
check = (FunctionValue[k+1] - FunctionValue[k])
/ (ArgumentValue[k+1] - ArgumentValue[k]);
ok &= NearEqual(dy[0], check, eps99, eps99);
}
return ok;
}
Input File: example/general/interp_retape.cpp