Prev Next interp_onetape.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Interpolation With Out Retaping: Example and Test

See Also
interp_retape.cpp

# include <cppad/cppad.hpp>
# include <cassert>
# include <cmath>

namespace {
    double ArgumentValue[] = {
        .0 ,
        .2 ,
        .4 ,
        .8 ,
        1.
    };
    double FunctionValue[] = {
        std::sin( ArgumentValue[0] ) ,
        std::sin( ArgumentValue[1] ) ,
        std::sin( ArgumentValue[2] ) ,
        std::sin( ArgumentValue[3] ) ,
        std::sin( ArgumentValue[4] )
    };
    size_t TableLength = 5;

    size_t Index(const double &x)
    {   // determine the index j such that x is between
        // ArgumentValue[j] and ArgumentValue[j+1]
        static size_t j = 0;
        while ( x < ArgumentValue[j] && j > 0 )
            j--;
        while ( x > ArgumentValue[j+1] && j < TableLength - 2)
            j++;
        // assert conditions that must be true given logic above
        assert( j >= 0 && j < TableLength - 1 );
        return j;
    }

    double Argument(const double &x)
    {   size_t j = Index(x);
        return ArgumentValue[j];
    }
    double Function(const double &x)
    {   size_t j = Index(x);
        return FunctionValue[j];
    }

    double Slope(const double &x)
    {   size_t j  = Index(x);
        double dx = ArgumentValue[j+1] - ArgumentValue[j];
        double dy = FunctionValue[j+1] - FunctionValue[j];
        return dy / dx;
    }
    CPPAD_DISCRETE_FUNCTION(double, Argument)
    CPPAD_DISCRETE_FUNCTION(double, Function)
    CPPAD_DISCRETE_FUNCTION(double, Slope)
}


bool interp_onetape(void)
{   bool ok = true;

    using CppAD::AD;
    using CppAD::NearEqual;
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

    // domain space vector
    size_t n = 1;
    CPPAD_TESTVECTOR(AD<double>) X(n);
    X[0] = .4 * ArgumentValue[1] + .6 * ArgumentValue[2];

    // declare independent variables and start tape recording
    CppAD::Independent(X);

    // evaluate piecewise linear interpolant at X[0]
    AD<double> A = Argument(X[0]);
    AD<double> F = Function(X[0]);
    AD<double> S = Slope(X[0]);
    AD<double> I = F + (X[0] - A) * S;

    // range space vector
    size_t m = 1;
    CPPAD_TESTVECTOR(AD<double>) Y(m);
    Y[0] = I;

    // create f: X -> Y and stop tape recording
    CppAD::ADFun<double> f(X, Y);

    // vectors for arguments to the function object f
    CPPAD_TESTVECTOR(double) x(n);   // argument values
    CPPAD_TESTVECTOR(double) y(m);   // function values
    CPPAD_TESTVECTOR(double) dx(n);  // differentials in x space
    CPPAD_TESTVECTOR(double) dy(m);  // differentials in y space

    // to check function value we use the fact that X[0] is between
    // ArgumentValue[1] and ArgumentValue[2]
    x[0]          = Value(X[0]);
    double delta  = ArgumentValue[2] - ArgumentValue[1];
    double check  = FunctionValue[2] * (x[0] - ArgumentValue[1]) / delta
                  + FunctionValue[1] * (ArgumentValue[2] - x[0]) / delta;
    ok  &= NearEqual(Y[0], check, eps99, eps99);

    // evaluate f where x has different value
    x[0]   = .7 * ArgumentValue[2] + .3 * ArgumentValue[3];
    y      = f.Forward(0, x);

    // check function value
    delta  = ArgumentValue[3] - ArgumentValue[2];
    check  = FunctionValue[3] * (x[0] - ArgumentValue[2]) / delta
                  + FunctionValue[2] * (ArgumentValue[3] - x[0]) / delta;
    ok  &= NearEqual(y[0], check, eps99, eps99);

    // evaluate partials w.r.t. x[0]
    dx[0] = 1.;
    dy    = f.Forward(1, dx);

    // check that the derivative is the slope
    check = (FunctionValue[3] - FunctionValue[2])
          / (ArgumentValue[3] - ArgumentValue[2]);
    ok   &= NearEqual(dy[0], check, eps99, eps99);

    return ok;
}

Input File: example/general/interp_onetape.cpp