@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Getting Started Using CppAD to Compute Derivatives
Purpose
Demonstrate the use of CppAD by computing the derivative
of a simple example function.
Function
The example function @(@
f : \B{R} \rightarrow \B{R}
@)@ is defined by
@[@
f(x) = a_0 + a_1 * x^1 + \cdots + a_{k-1} * x^{k-1}
@]@
where
a
is a fixed vector of length
k
.
Derivative
The derivative of @(@
f(x)
@)@ is given by
@[@
f' (x) = a_1 + 2 * a_2 * x + \cdots + (k-1) * a_{k-1} * x^{k-2}
@]@
Value
For the particular case in this example,
@(@
k
@)@ is equal to 5,
@(@
a = (1, 1, 1, 1, 1)
@)@, and
@(@
x = 3
@)@.
If follows that
@[@
f' ( 3 ) = 1 + 2 * 3 + 3 * 3^2 + 4 * 3^3 = 142
@]@
Include File
The following command, in the program below, includes the CppAD package:
# include <cppad/cppad.hpp>
Poly
The routine Poly, defined below, evaluates a polynomial.
A general purpose polynomial evaluation routine is documented and
distributed with CppAD; see Poly
.
CppAD Namespace
All of the functions and objects defined by CppAD are in the
CppAD namespace. In the example below,
using CppAD::AD;
enables one to abbreviate CppAD::AD using just AD.
# include <iostream> // standard input/output# include <vector> // standard vector# include <cppad/cppad.hpp> // the CppAD packagenamespace { // begin the empty namespace// define the function Poly(a, x) = a[0] + a[1]*x[1] + ... + a[k-1]*x[k-1]template <class Type>
Type Poly(constCPPAD_TESTVECTOR(double) &a, const Type &x)
{ size_t k = a.size();
Type y = 0.; // initialize summation
Type x_i = 1.; // initialize x^ifor(size_t i = 0; i < k; i++)
{ y += a[i] * x_i; // y = y + a_i * x^i
x_i *= x; // x_i = x_i * x
}
return y;
}
}
// main program
int main(void)
{ using CppAD::AD; // use AD as abbreviation for CppAD::ADusing std::vector; // use vector as abbreviation for std::vector// vector of polynomial coefficients
size_t k = 5; // number of polynomial coefficientsCPPAD_TESTVECTOR(double) a(k); // vector of polynomial coefficientsfor(size_t i = 0; i < k; i++)
a[i] = 1.; // value of polynomial coefficients// domain space vector
size_t n = 1; // number of domain space variables
vector< AD<double> > ax(n); // vector of domain space variables
ax[0] = 3.; // value at which function is recorded// declare independent variables and start recording operation sequence
CppAD::Independent(ax);
// range space vector
size_t m = 1; // number of ranges space variables
vector< AD<double> > ay(m); // vector of ranges space variables
ay[0] = Poly(a, ax[0]); // record operations that compute ay[0]// store operation sequence in f: X -> Y and stop recording
CppAD::ADFun<double> f(ax, ay);
// compute derivative using operation sequence stored in f
vector<double> jac(m * n); // Jacobian of f (m by n matrix)
vector<double> x(n); // domain space vector
x[0] = 3.; // argument value for computing derivative
jac = f.Jacobian(x); // Jacobian for operation sequence// print the results
std::cout << "f'(3) computed by CppAD = " << jac[0] << std::endl;
// check if the derivative is correct
int error_code;
if( jac[0] == 142. )
error_code = 0; // return code for correct caseelse error_code = 1; // return code for incorrect casereturn error_code;
}
Output
Executing the program above will generate the following output:
f'(3) computed by CppAD = 142
Running
After you configure your system using the cmake
command,
you compile and run this example by executing the command
make check_example_get_started
in the build directory; i.e., the directory where the cmake command
was executed.
Exercises
Modify the program above to accomplish the following tasks
using CppAD:
Compute and print the derivative of @(@
f(x) = 1 + x + x^2 + x^3 + x^4
@)@
at the point @(@
x = 2
@)@.
Compute and print the derivative of @(@
f(x) = 1 + x + x^2 / 2
@)@
at the point @(@
x = .5
@)@.
Compute and print the derivative of @(@
f(x) = \exp (x) - 1 - x - x^2 / 2
@)@
at the point @(@
x = .5
@)@.