@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
exp_eps: CppAD Forward and Reverse Sweeps
.
Purpose
Use CppAD forward and reverse modes to compute the
partial derivative with respect to @(@
x
@)@,
at the point @(@
x = .5
@)@ and @(@
\varepsilon = .2
@)@,
of the function
exp_eps(x, epsilon)
as defined by the exp_eps.hpp
include file.
Create and test a modified version of the routine below that computes
the same order derivatives with respect to @(@
x
@)@,
at the point @(@
x = .1
@)@ and @(@
\varepsilon = .2
@)@,
of the function
exp_eps(x, epsilon)
Create and test a modified version of the routine below that computes
partial derivative with respect to @(@
x
@)@,
at the point @(@
x = .1
@)@ and @(@
\varepsilon = .2
@)@,
of the function corresponding to the operation sequence
for @(@
x = .5
@)@ and @(@
\varepsilon = .2
@)@.
Hint: you could define a vector u with two components and use
f.Forward(0, u)
to run zero order forward mode at a point different
form the point where the operation sequence corresponding to
f
was recorded.
# include <cppad/cppad.hpp> // http://www.coin-or.org/CppAD/# include "exp_eps.hpp" // our example exponential function approximation
bool exp_eps_cppad(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::vector; // can use any simple vector template classusing CppAD::NearEqual; // checks if values are nearly equal// domain space vector
size_t n = 2; // dimension of the domain space
vector< AD<double> > U(n);
U[0] = .5; // value of x for this operation sequence
U[1] = .2; // value of e for this operation sequence// declare independent variables and start recording operation sequence
CppAD::Independent(U);
// evaluate our exponential approximation
AD<double> x = U[0];
AD<double> epsilon = U[1];
AD<double> apx = exp_eps(x, epsilon);
// range space vector
size_t m = 1; // dimension of the range space
vector< AD<double> > Y(m);
Y[0] = apx; // variable that represents only range space component// Create f: U -> Y corresponding to this operation sequence// and stop recording. This also executes a zero order forward// mode sweep using values in U for x and e.
CppAD::ADFun<double> f(U, Y);
// first order forward mode sweep that computes partial w.r.t x
vector<double> du(n); // differential in domain space
vector<double> dy(m); // differential in range space
du[0] = 1.; // x direction in domain space
du[1] = 0.;
dy = f.Forward(1, du); // partial w.r.t. x
double check = 1.5;
ok &= NearEqual(dy[0], check, 1e-10, 1e-10);
// first order reverse mode sweep that computes the derivative
vector<double> w(m); // weights for components of the range
vector<double> dw(n); // derivative of the weighted function
w[0] = 1.; // there is only one weight
dw = f.Reverse(1, w); // derivative of w[0] * exp_eps(x, epsilon)
check = 1.5; // partial w.r.t. x
ok &= NearEqual(dw[0], check, 1e-10, 1e-10);
check = 0.; // partial w.r.t. epsilon
ok &= NearEqual(dw[1], check, 1e-10, 1e-10);
// second order forward sweep that computes// second partial of exp_eps(x, epsilon) w.r.t. x
vector<double> x2(n); // second order Taylor coefficients
vector<double> y2(m);
x2[0] = 0.; // evaluate partial w.r.t x
x2[1] = 0.;
y2 = f.Forward(2, x2);
check = 0.5 * 1.; // Taylor coef is 1/2 second derivative
ok &= NearEqual(y2[0], check, 1e-10, 1e-10);
// second order reverse sweep that computes// derivative of partial of exp_eps(x, epsilon) w.r.t. x
dw.resize(2 * n); // space for first and second derivative
dw = f.Reverse(2, w);
check = 1.; // result should be second derivative
ok &= NearEqual(dw[0*2+1], check, 1e-10, 1e-10);
return ok;
}