Loading [MathJax]/extensions/TeX/newcommand.js
Prev Next

\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} } This is cppad-20221105 documentation. Here is a link to its current documentation .
exp_2: Second Order Reverse Mode

Purpose
In general, a second order reverse sweep is given the first order expansion for all of the variables in an operation sequence. Given a choice of a particular variable, it computes the derivative, of that variables first order expansion coefficient, with respect to all of the independent variables.

Mathematical Form
Suppose that we use the algorithm exp_2.hpp to compute f(x) = 1 + x + x^2 / 2 The corresponding second derivative is \Dpow{2}{x} f (x) = 1

f_5
For our example, we chose to compute the derivative of v_5^{(1)} with respect to all the independent variable. For the case computed for the first order sweep , v_5^{(1)} is the derivative of the value returned by exp_2.hpp . This the value computed will be the second derivative of the value returned by exp_2.hpp . We begin with the function f_5 where v_5^{(1)} is both an argument and the value of the function; i.e., \begin{array}{rcl} f_5 \left( v_1^{(0)}, v_1^{(1)} , \ldots , v_5^{(0)} , v_5^{(1)} \right) & = & v_5^{(1)} \\ \D{f_5}{v_5^{(1)}} & = & 1 \end{array} All the other partial derivatives of f_5 are zero.

Index 5: f_4
Second order reverse mode starts with the last operation in the sequence. For the case in question, this is the operation with index 5. The zero and first order sweep representations of this operation are \begin{array}{rcl} v_5^{(0)} & = & v_2^{(0)} + v_4^{(0)} \\ v_5^{(1)} & = & v_2^{(1)} + v_4^{(1)} \end{array} We define the function f_4 \left( v_1^{(0)} , \ldots , v_4^{(1)} \right) as equal to f_5 except that v_5^{(0)} and v_5^{(1)} are eliminated using this operation; i.e. f_4 = f_5 \left[ v_1^{(0)} , \ldots , v_4^{(1)} , v_5^{(0)} \left( v_2^{(0)} , v_4^{(0)} \right) , v_5^{(1)} \left( v_2^{(1)} , v_4^{(1)} \right) \right] It follows that \begin{array}{rcll} \D{f_4}{v_2^{(1)}} & = & \D{f_5}{v_2^{(1)}} + \D{f_5}{v_5^{(1)}} * \D{v_5^{(1)}}{v_2^{(1)}} & = 1 \\ \D{f_4}{v_4^{(1)}} & = & \D{f_5}{v_4^{(1)}} + \D{f_5}{v_5^{(1)}} * \D{v_5}{v_4^{(1)}} & = 1 \end{array} All the other partial derivatives of f_4 are zero.

Index 4: f_3
The next operation has index 4, \begin{array}{rcl} v_4^{(0)} & = & v_3^{(0)} / 2 \\ v_4^{(1)} & = & v_3^{(1)} / 2 \end{array} We define the function f_3 \left( v_1^{(0)} , \ldots , v_3^{(1)} \right) as equal to f_4 except that v_4^{(0)} and v_4^{(1)} are eliminated using this operation; i.e., f_3 = f_4 \left[ v_1^{(0)} , \ldots , v_3^{(1)} , v_4^{(0)} \left( v_3^{(0)} \right) , v_4^{(1)} \left( v_3^{(1)} \right) \right] It follows that \begin{array}{rcll} \D{f_3}{v_2^{(1)}} & = & \D{f_4}{v_2^{(1)}} & = 1 \\ \D{f_3}{v_3^{(1)}} & = & \D{f_4}{v_3^{(1)}} + \D{f_4}{v_4^{(1)}} * \D{v_4^{(1)}}{v_3^{(1)}} & = 0.5 \end{array} All the other partial derivatives of f_3 are zero.

Index 3: f_2
The next operation has index 3, \begin{array}{rcl} v_3^{(0)} & = & v_1^{(0)} * v_1^{(0)} \\ v_3^{(1)} & = & 2 * v_1^{(0)} * v_1^{(1)} \end{array} We define the function f_2 \left( v_1^{(0)} , \ldots , v_2^{(1)} \right) as equal to f_3 except that v_3^{(0)} and v_3^{(1)} are eliminated using this operation; i.e., f_2 = f_3 \left[ v_1^{(0)} , \ldots , v_2^{(1)} , v_3^{(0)} ( v_1^{(0)} ) , v_3^{(1)} ( v_1^{(0)} , v_1^{(1)} ) \right] Note that, from the first order forward sweep , the value of v_1^{(0)} is equal to .5 and v_1^{(1)} is equal 1. It follows that \begin{array}{rcll} \D{f_2}{v_1^{(0)}} & = & \D{f_3}{v_1^{(0)}} + \D{f_3}{v_3^{(0)}} * \D{v_3^{(0)}}{v_1^{(0)}} + \D{f_3}{v_3^{(1)}} * \D{v_3^{(1)}}{v_1^{(0)}} & = 1 \\ \D{f_2}{v_1^{(1)}} & = & \D{f_3}{v_1^{(1)}} + \D{f_3}{v_3^{(1)}} * \D{v_3^{(1)}}{v_1^{(1)}} & = 0.5 \\ \D{f_2}{v_2^{(0)}} & = & \D{f_3}{v_2^{(0)}} & = 0 \\ \D{f_2}{v_2^{(1)}} & = & \D{f_3}{v_2^{(1)}} & = 1 \end{array}

Index 2: f_1
The next operation has index 2, \begin{array}{rcl} v_2^{(0)} & = & 1 + v_1^{(0)} \\ v_2^{(1)} & = & v_1^{(1)} \end{array} We define the function f_1 ( v_1^{(0)} , v_1^{(1)} ) as equal to f_2 except that v_2^{(0)} and v_2^{(1)} are eliminated using this operation; i.e., f_1 = f_2 \left[ v_1^{(0)} , v_1^{(1)} , v_2^{(0)} ( v_1^{(0)} ) , v_2^{(1)} ( v_1^{(1)} ) \right] It follows that \begin{array}{rcll} \D{f_1}{v_1^{(0)}} & = & \D{f_2}{v_1^{(0)}} + \D{f_2}{v_2^{(0)}} * \D{v_2^{(0)}}{v_1^{(0)}} & = 1 \\ \D{f_1}{v_1^{(1)}} & = & \D{f_2}{v_1^{(1)}} + \D{f_2}{v_2^{(1)}} * \D{v_2^{(1)}}{v_1^{(1)}} & = 1.5 \end{array} Note that v_1 is equal to x , so the second derivative of the function defined by exp_2.hpp at x = .5 is given by \Dpow{2}{x} v_5^{(0)} = \D{ v_5^{(1)} }{x} = \D{ v_5^{(1)} }{v_1^{(0)}} = \D{f_1}{v_1^{(0)}} = 1 There is a theorem about Algorithmic Differentiation that explains why the other partial of f_1 is equal to the first derivative of the function defined by exp_2.hpp at x = .5 .

Verification
The file exp_2_rev2.cpp contains a routine which verifies the values computed above. It only tests the partial derivatives of f_j that might not be equal to the corresponding partials of f_{j+1} ; i.e., the other partials of f_j must be equal to the corresponding partials of f_{j+1} .

Exercises
  1. Which statement in the routine defined by exp_2_rev2.cpp uses the values that are calculated by the routine defined by exp_2_for0.cpp ? Which statements use values that are calculate by the routine defined in exp_2_for1.cpp ?
  2. Consider the case where x = .1 and we first preform a zero order forward sweep, then a first order sweep, for the operation sequence used above. What are the results of a second order reverse sweep; i.e., what are the corresponding derivatives of f_5 , f_4 , \ldots , f_1 .
  3. Create a modified version of exp_2_rev2.cpp that verifies the values you obtained for the previous exercise. Also create and run a main program that reports the result of calling the modified version of exp_2_rev2.cpp .

Input File: introduction/exp_2.omh