|
Prev
| Next
|
|
|
|
|
|
exp_2_for2.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
exp_2: Verify Second Order Forward Sweep
# include <cmath> // prototype for fabs
extern bool exp_2_for0(double *v0); // computes zero order forward sweep
extern bool exp_2_for1(double *v1); // computes first order forward sweep
bool exp_2_for2(void)
{ bool ok = true;
double v0[6], v1[6], v2[6];
// set the value of v0[j], v1[j], for j = 1 , ... , 5
ok &= exp_2_for0(v0);
ok &= exp_2_for1(v1);
v2[1] = 0.; // v1 = x
ok &= std::fabs( v2[1] - 0. ) <= 1e-10;
v2[2] = v2[1]; // v2 = 1 + v1
ok &= std::fabs( v2[2] - 0. ) <= 1e-10;
v2[3] = 2.*(v0[1]*v2[1] + v1[1]*v1[1]); // v3 = v1 * v1
ok &= std::fabs( v2[3] - 2. ) <= 1e-10;
v2[4] = v2[3] / 2.; // v4 = v3 / 2
ok &= std::fabs( v2[4] - 1. ) <= 1e-10;
v2[5] = v2[2] + v2[4]; // v5 = v2 + v4
ok &= std::fabs( v2[5] - 1. ) <= 1e-10;
return ok;
}
Input File: introduction/exp_2_for2.cpp