Prev Next cppad_det_minor.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Cppad Speed: Gradient of Determinant by Minor Expansion

Specifications
See link_det_minor .

Implementation
# include <cppad/cppad.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <cppad/speed/uniform_01.hpp>

// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;
// see comments in main program for this external
extern size_t global_cppad_thread_alloc_inuse;

namespace {
    // typedefs
    typedef CppAD::AD<double>       a_double;
    typedef CppAD::vector<a_double> a_vector;
    //
    // setup
    void setup(
        // inputs
        size_t size             ,
        // outputs
        CppAD::ADFun<double>& f )
    {
        // object for computing determinant
        CppAD::det_by_minor<a_double>   a_det(size);
        //
        // number of independent variables
        size_t nx = size * size;
        //
        // choose a matrix
        CppAD::vector<double> matrix(nx);
        CppAD::uniform_01(nx, matrix);
        //
        // copy to independent variables
        a_vector   a_A(nx);
        for(size_t j = 0; j < nx; ++j)
            a_A[j] = matrix[j];
        //
        // declare independent variables for function computation
        bool record_compare   = false;
        size_t abort_op_index = 0;
        CppAD::Independent(a_A, abort_op_index, record_compare);
        //
        // AD computation of the determinant
        a_vector a_detA(1);
        a_detA[0] = a_det(a_A);
        //
        // f : A -> detA
        f.Dependent(a_A, a_detA);
        //
        // optimize
        if( global_option["optimize"] )
        {   std::string optimize_options =
                "no_conditional_skip no_compare_op no_print_for_op";
            f.optimize(optimize_options);
        }

    }

}

bool link_det_minor(
    const std::string&         job      ,
    size_t                     size     ,
    size_t                     repeat   ,
    CppAD::vector<double>     &matrix   ,
    CppAD::vector<double>     &gradient )
{   global_cppad_thread_alloc_inuse = 0;

    // --------------------------------------------------------------------
    // check global options
    const char* valid[] = { "memory", "onetape", "optimize"};
    size_t n_valid = sizeof(valid) / sizeof(valid[0]);
    typedef std::map<std::string, bool>::iterator iterator;
    //
    for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
    {   if( itr->second )
        {   bool ok = false;
            for(size_t i = 0; i < n_valid; i++)
                ok |= itr->first == valid[i];
            if( ! ok )
                return false;
        }
    }
    // ---------------------------------------------------------------------
    //
    // AD function mapping matrix to determinant
    static CppAD::ADFun<double> static_f;
    //
    // size corresponding to static_f
    static size_t static_size = 0;
    //
    // number of independent variables
    size_t nx = size * size;
    //
    // vectors of reverse mode weights
    CppAD::vector<double> w(1);
    w[0] = 1.;
    //
    // onetape
    bool onetape = global_option["onetape"];
    // -----------------------------------------------------------------------
    if( job == "setup" )
    {   if( onetape )
        {   setup(size, static_f);
            static_size = size;
        }
        else
        {   static_size = 0;
        }
        return true;
    }
    if( job ==  "teardown" )
    {   static_f = CppAD::ADFun<double>();
        return true;
    }
    // -----------------------------------------------------------------------
    CPPAD_ASSERT_UNKNOWN( job == "run" );
    while(repeat--)
    {   if( onetape )
        {   // use if before assert to avoid warning
            if( size != static_size )
            {   CPPAD_ASSERT_UNKNOWN( size == static_size );
            }
        }
        else
        {   setup(size, static_f);
        }
        // get next matrix
        CppAD::uniform_01(nx, matrix);

        // evaluate the gradient
        static_f.Forward(0, matrix);
        gradient = static_f.Reverse(1, w);
    }
    size_t thread                   = CppAD::thread_alloc::thread_num();
    global_cppad_thread_alloc_inuse = CppAD::thread_alloc::inuse(thread);
    return true;
}

Input File: speed/cppad/det_minor.cpp