|
Prev
| Next
|
|
|
|
|
|
cppad_det_lu.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Cppad Speed: Gradient of Determinant Using Lu Factorization
Specifications
See link_det_lu
.
Implementation
# include <cppad/speed/det_by_lu.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/cppad.hpp>
// Note that CppAD uses global_option["memory"] at the main program level
# include <map>
extern std::map<std::string, bool> global_option;
// see comments in main program for this external
extern size_t global_cppad_thread_alloc_inuse;
bool link_det_lu(
size_t size ,
size_t repeat ,
CppAD::vector<double> &matrix ,
CppAD::vector<double> &gradient )
{ global_cppad_thread_alloc_inuse = 0;
// --------------------------------------------------------------------
// check global options
const char* valid[] = { "memory", "optimize"};
size_t n_valid = sizeof(valid) / sizeof(valid[0]);
typedef std::map<std::string, bool>::iterator iterator;
//
for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
{ if( itr->second )
{ bool ok = false;
for(size_t i = 0; i < n_valid; i++)
ok |= itr->first == valid[i];
if( ! ok )
return false;
}
}
// --------------------------------------------------------------------
// optimization options:
std::string optimize_options =
"no_conditional_skip no_compare_op no_print_for_op";
// -----------------------------------------------------
// setup
typedef CppAD::AD<double> ADScalar;
typedef CppAD::vector<ADScalar> ADVector;
CppAD::det_by_lu<ADScalar> Det(size);
size_t i; // temporary index
size_t m = 1; // number of dependent variables
size_t n = size * size; // number of independent variables
ADVector A(n); // AD domain space vector
ADVector detA(m); // AD range space vector
CppAD::ADFun<double> f; // AD function object
// vectors of reverse mode weights
CppAD::vector<double> w(1);
w[0] = 1.;
// do not even record comparison operators
size_t abort_op_index = 0;
bool record_compare = false;
// ------------------------------------------------------
while(repeat--)
{ // get the next matrix
CppAD::uniform_01(n, matrix);
for( i = 0; i < n; i++)
A[i] = matrix[i];
// declare independent variables
Independent(A, abort_op_index, record_compare);
// AD computation of the determinant
detA[0] = Det(A);
// create function object f : A -> detA
f.Dependent(A, detA);
if( global_option["optimize"] )
f.optimize(optimize_options);
// evaluate and return gradient using reverse mode
f.Forward(0, matrix);
gradient = f.Reverse(1, w);
}
size_t thread = CppAD::thread_alloc::thread_num();
global_cppad_thread_alloc_inuse = CppAD::thread_alloc::inuse(thread);
return true;
}
Input File: speed/cppad/det_lu.cpp