Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
User Atomic Matrix Multiply: Example and Test

See Also
atomic_two_eigen_mat_mul.cpp

Class Definition
This example uses the file atomic_three_mat_mul.hpp which defines matrix multiply as a atomic_three operation.

Use Atomic Function
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_three/mat_mul.hpp>

bool mat_mul(void)
{   bool ok = true;
    using CppAD::AD;
    using CppAD::vector;
    size_t i, j;

Constructor

    // -------------------------------------------------------------------
    // object that multiplies  2 x 2  matrices
    atomic_mat_mul afun;

Recording
    // start recording with four independent varables
    size_t n = 4;
    vector<double> x(n);
    vector< AD<double> > ax(n);
    for(j = 0; j < n; j++)
        ax[j] = x[j] = double(j + 1);
    CppAD::Independent(ax);

    // ------------------------------------------------------------------
    size_t nr_left   = 2;
    size_t n_middle  = 2;
    size_t nc_right  = 2;
    vector< AD<double> > atom_x(3 + (nr_left + nc_right) * n_middle );

    // matrix dimensions
    atom_x[0] = AD<double>( nr_left );
    atom_x[1] = AD<double>( n_middle );
    atom_x[2] = AD<double>( nc_right );

    // left matrix
    atom_x[3] = ax[0];  // left[0, 0] = x0
    atom_x[4] = ax[1];  // left[0, 1] = x1
    atom_x[5] = 5.;     // left[1, 0] = 5
    atom_x[6] = 6.;     // left[1, 1] = 6

    // right matix
    atom_x[7] = ax[2];  // right[0, 0] = x2
    atom_x[8] = 7.;     // right[0, 1] = 7
    atom_x[9] = ax[3];  // right[1, 0] = x3
    atom_x[10] = 8.;     // right[1, 1] = 8
    // ------------------------------------------------------------------
    /*
    [ x0 , x1 ] * [ x2 , 7 ] = [ x0*x2 + x1*x3 , x0*7 + x1*8 ]
    [ 5  , 6  ]   [ x3 , 8 ]   [  5*x2 +  6*x3 ,  5*7 +  6*8 ]
    */
    vector< AD<double> > atom_y(nr_left * nc_right);
    afun(atom_x, atom_y);

    ok &= (atom_y[0] == x[0]*x[2] + x[1]*x[3]) & Variable(atom_y[0]);
    ok &= (atom_y[1] == x[0]*7.   + x[1]*8.  ) & Variable(atom_y[1]);
    ok &= (atom_y[2] ==   5.*x[2] +   6.*x[3]) & Variable(atom_y[2]);
    ok &= (atom_y[3] ==   5.*7.   +   6.*8.  ) & Parameter(atom_y[3]);

    // ------------------------------------------------------------------
    // define the function g : x -> atom_y
    // g(x) = [ x0*x2 + x1*x3 , x0*7 + x1*8 , 5*x2  + 6*x3  , 5*7 + 6*8 ]^T
    CppAD::ADFun<double> g(ax, atom_y);

forward
    // Test zero order forward mode evaluation of g(x)
    size_t m = atom_y.size();
    vector<double> y(m);
    for(j = 0; j <  n; j++)
        x[j] = double(j + 2);
    y = g.Forward(0, x);
    ok &= y[0] == x[0] * x[2] + x[1] * x[3];
    ok &= y[1] == x[0] * 7.   + x[1] * 8.;
    ok &= y[2] == 5. * x[2]   + 6. * x[3];
    ok &= y[3] == 5. * 7.     + 6. * 8.;

    //----------------------------------------------------------------------
    // Test first order forward mode evaluation of g'(x) * [1, 2, 3, 4]^T
    // g'(x) = [ x2, x3, x0, x1 ]
    //         [ 7 ,  8,  0, 0  ]
    //         [ 0 ,  0,  5, 6  ]
    //         [ 0 ,  0,  0, 0  ]
    CppAD::vector<double> dx(n), dy(m);
    for(j = 0; j <  n; j++)
        dx[j] = double(j + 1);
    dy = g.Forward(1, dx);
    ok &= dy[0] == 1. * x[2] + 2. * x[3] + 3. * x[0] + 4. * x[1];
    ok &= dy[1] == 1. * 7.   + 2. * 8.   + 3. * 0.   + 4. * 0.;
    ok &= dy[2] == 1. * 0.   + 2. * 0.   + 3. * 5.   + 4. * 6.;
    ok &= dy[3] == 1. * 0.   + 2. * 0.   + 3. * 0.   + 4. * 0.;

    //----------------------------------------------------------------------
    // Test second order forward mode
    // g_0^2 (x) = [ 0, 0, 1, 0 ], g_0^2 (x) * [1] = [3]
    //             [ 0, 0, 0, 1 ]              [2]   [4]
    //             [ 1, 0, 0, 0 ]              [3]   [1]
    //             [ 0, 1, 0, 0 ]              [4]   [2]
    CppAD::vector<double> ddx(n), ddy(m);
    for(j = 0; j <  n; j++)
        ddx[j] = 0.;
    ddy = g.Forward(2, ddx);

    // [1, 2, 3, 4] * g_0^2 (x) * [1, 2, 3, 4]^T = 1*3 + 2*4 + 3*1 + 4*2
    ok &= 2. * ddy[0] == 1. * 3. + 2. * 4. + 3. * 1. + 4. * 2.;

    // for i > 0, [1, 2, 3, 4] * g_i^2 (x) * [1, 2, 3, 4]^T = 0
    ok &= ddy[1] == 0.;
    ok &= ddy[2] == 0.;
    ok &= ddy[3] == 0.;

reverse
    // Test second order reverse mode
    CppAD::vector<double> w(m), dw(2 * n);
    for(i = 0; i < m; i++)
        w[i] = 0.;
    w[0] = 1.;
    dw = g.Reverse(2, w);

    // g_0'(x) = [ x2, x3, x0, x1 ]
    ok &= dw[0*2 + 0] == x[2];
    ok &= dw[1*2 + 0] == x[3];
    ok &= dw[2*2 + 0] == x[0];
    ok &= dw[3*2 + 0] == x[1];

    // g_0'(x)   * [1, 2, 3, 4]  = 1 * x2 + 2 * x3 + 3 * x0 + 4 * x1
    // g_0^2 (x) * [1, 2, 3, 4]  = [3, 4, 1, 2]
    ok &= dw[0*2 + 1] == 3.;
    ok &= dw[1*2 + 1] == 4.;
    ok &= dw[2*2 + 1] == 1.;
    ok &= dw[3*2 + 1] == 2.;

jac_sparsity
    // sparsity pattern for the Jacobian
    // g'(x) = [ x2, x3, x0, x1  ]
    //         [  7,  8,  0,  0  ]
    //         [  0,  0,  5,  6  ]
    //         [  0,  0,  0,  0  ]
    CppAD::sparse_rc< CPPAD_TESTVECTOR(size_t) > pattern_in, pattern_out;
    bool transpose     = false;
    bool dependency    = false;
    bool internal_bool = false;
    // test both forward and reverse mode
    for(size_t forward_mode = 0; forward_mode <= 1; ++forward_mode)
    {   if( bool(forward_mode) )
        {   pattern_in.resize(n, n, n);
            for(j = 0; j < n; ++j)
                pattern_in.set(j, j, j);
            g.for_jac_sparsity(
                pattern_in, transpose, dependency, internal_bool, pattern_out
            );
        }
        else
        {   pattern_in.resize(m, m, m);
            for(i = 0; i < m; ++i)
                pattern_in.set(i, i, i);
            g.rev_jac_sparsity(
                pattern_in, transpose, dependency, internal_bool, pattern_out
            );
        }
        const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
        const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
        CPPAD_TESTVECTOR(size_t) row_major  = pattern_out.row_major();
        size_t k = 0;
        for(j = 0; j < n; ++j)
        {   ok &= row[ row_major[k] ] == 0; // (0, j)
            ok &= col[ row_major[k] ] == j;
            ++k;
        }
        ok &= row[ row_major[k] ] == 1; // (1, 0)
        ok &= col[ row_major[k] ] == 0; //
        ++k;
        ok &= row[ row_major[k] ] == 1; // (1, 1)
        ok &= col[ row_major[k] ] == 1; //
        ++k;
        ok &= row[ row_major[k] ] == 2; // (2, 2)
        ok &= col[ row_major[k] ] == 2; //
        ++k;
        ok &= row[ row_major[k] ] == 2; // (2, 3)
        ok &= col[ row_major[k] ] == 3; //
        ++k;
        ok &= pattern_out.nnz() == k;
    }

hes_sparsity
    /* Hessian sparsity pattern
    g_0^2 (x) = [ 0, 0, 1, 0 ] and for i > 0, g_i^2 = 0
                [ 0, 0, 0, 1 ]
                [ 1, 0, 0, 0 ]
                [ 0, 1, 0, 0 ]
    */
    CPPAD_TESTVECTOR(bool) select_x(n), select_y(m);
    for(j = 0; j < n; ++j)
        select_x[j] = true;
    for(i = 0; i < m; ++i)
        select_y[i] = true;
    for(size_t forward_mode = 0; forward_mode <= 1; ++forward_mode)
    {   if( bool(forward_mode) )
        {   g.for_hes_sparsity(
                select_y, select_x, internal_bool, pattern_out
            );
        }
        else
        {   // results for for_jac_sparsity are stored in g
            g.rev_hes_sparsity(
                select_y, transpose, internal_bool, pattern_out
            );
        }
        const CPPAD_TESTVECTOR(size_t)& row = pattern_out.row();
        const CPPAD_TESTVECTOR(size_t)& col = pattern_out.col();
        CPPAD_TESTVECTOR(size_t) row_major  = pattern_out.row_major();
        size_t k = 0;
        ok &= row[ row_major[k] ] == 0; // (0, 2)
        ok &= col[ row_major[k] ] == 2;
        ++k;
        ok &= row[ row_major[k] ] == 1; // (1, 3)
        ok &= col[ row_major[k] ] == 3;
        ++k;
        ok &= row[ row_major[k] ] == 2; // (2, 0)
        ok &= col[ row_major[k] ] == 0;
        ++k;
        ok &= row[ row_major[k] ] == 3; // (3, 1)
        ok &= col[ row_major[k] ] == 1;
        ++k;
        ok &= pattern_out.nnz() == k;
    }

    return ok;
}

Input File: example/atomic_three/mat_mul.cpp