Prev Next

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Atomic Eigen Matrix Multiply: Example and Test

Description
The ADFun function object f for this example is @[@ f(x) = \left( \begin{array}{cc} 0 & 0 \\ 1 & 2 \\ x_0 & x_1 \end{array} \right) \left( \begin{array}{c} x_0 \\ x_1 \end{array} \right) = \left( \begin{array}{c} 0 \\ x_0 + 2 x_1 \\ x_0 x_0 + x_1 x_1 ) \end{array} \right) @]@

Class Definition
This example uses the file atomic_two_eigen_mat_mul.hpp which defines matrix multiply as a atomic_two operation.

Use Atomic Function
# include <cppad/cppad.hpp>
# include <cppad/example/atomic_two/eigen_mat_mul.hpp>

bool eigen_mat_mul(void)
{   //
    typedef double                                   scalar;
    typedef CppAD::AD<scalar>                        ad_scalar;
    typedef atomic_eigen_mat_mul<scalar>::ad_matrix  ad_matrix;
    //
    bool ok    = true;
    scalar eps = 10. * std::numeric_limits<scalar>::epsilon();
    using CppAD::NearEqual;
    //

Constructor
    // -------------------------------------------------------------------
    // object that multiplies arbitrary matrices
    atomic_eigen_mat_mul<scalar> mat_mul;
    // -------------------------------------------------------------------
    // declare independent variable vector x
    size_t n = 2;
    CPPAD_TESTVECTOR(ad_scalar) ad_x(n);
    for(size_t j = 0; j < n; j++)
        ad_x[j] = ad_scalar(j);
    CppAD::Independent(ad_x);
    // -------------------------------------------------------------------
    //        [ 0     0    ]
    // left = [ 1     2    ]
    //        [ x[0]  x[1] ]
    size_t nr_left  = 3;
    size_t n_middle   = 2;
    ad_matrix ad_left(nr_left, n_middle);
    ad_left(0, 0) = ad_scalar(0.0);
    ad_left(0, 1) = ad_scalar(0.0);
    ad_left(1, 0) = ad_scalar(1.0);
    ad_left(1, 1) = ad_scalar(2.0);
    ad_left(2, 0) = ad_x[0];
    ad_left(2, 1) = ad_x[1];
    // -------------------------------------------------------------------
    // right = [ x[0] , x[1] ]^T
    size_t nc_right = 1;
    ad_matrix ad_right(n_middle, nc_right);
    ad_right(0, 0) = ad_x[0];
    ad_right(1, 0) = ad_x[1];
    // -------------------------------------------------------------------
    // use atomic operation to multiply left * right
    ad_matrix ad_result = mat_mul.op(ad_left, ad_right);
    // -------------------------------------------------------------------
    // check that first component of result is a parameter
    // and the other components are varaibles.
    ok &= Parameter( ad_result(0, 0) );
    ok &= Variable(  ad_result(1, 0) );
    ok &= Variable(  ad_result(2, 0) );
    // -------------------------------------------------------------------
    // declare the dependent variable vector y
    size_t m = 3;
    CPPAD_TESTVECTOR(ad_scalar) ad_y(m);
    for(size_t i = 0; i < m; i++)
        ad_y[i] = ad_result(long(i), 0);
    CppAD::ADFun<scalar> f(ad_x, ad_y);
    // -------------------------------------------------------------------
    // check zero order forward mode
    CPPAD_TESTVECTOR(scalar) x(n), y(m);
    for(size_t i = 0; i < n; i++)
        x[i] = scalar(i + 2);
    y   = f.Forward(0, x);
    ok &= NearEqual(y[0], 0.0,                       eps, eps);
    ok &= NearEqual(y[1], x[0] + 2.0 * x[1],         eps, eps);
    ok &= NearEqual(y[2], x[0] * x[0] + x[1] * x[1], eps, eps);
    // -------------------------------------------------------------------
    // check first order forward mode
    CPPAD_TESTVECTOR(scalar) x1(n), y1(m);
    x1[0] = 1.0;
    x1[1] = 0.0;
    y1    = f.Forward(1, x1);
    ok   &= NearEqual(y1[0], 0.0,        eps, eps);
    ok   &= NearEqual(y1[1], 1.0,        eps, eps);
    ok   &= NearEqual(y1[2], 2.0 * x[0], eps, eps);
    x1[0] = 0.0;
    x1[1] = 1.0;
    y1    = f.Forward(1, x1);
    ok   &= NearEqual(y1[0], 0.0,        eps, eps);
    ok   &= NearEqual(y1[1], 2.0,        eps, eps);
    ok   &= NearEqual(y1[2], 2.0 * x[1], eps, eps);
    // -------------------------------------------------------------------
    // check second order forward mode
    CPPAD_TESTVECTOR(scalar) x2(n), y2(m);
    x2[0] = 0.0;
    x2[1] = 0.0;
    y2    = f.Forward(2, x2);
    ok   &= NearEqual(y2[0], 0.0, eps, eps);
    ok   &= NearEqual(y2[1], 0.0, eps, eps);
    ok   &= NearEqual(y2[2], 1.0, eps, eps); // 1/2 * f_1''(x)
    // -------------------------------------------------------------------
    // check first order reverse mode
    CPPAD_TESTVECTOR(scalar) w(m), d1w(n);
    w[0]  = 0.0;
    w[1]  = 1.0;
    w[2]  = 0.0;
    d1w   = f.Reverse(1, w);
    ok   &= NearEqual(d1w[0], 1.0, eps, eps);
    ok   &= NearEqual(d1w[1], 2.0, eps, eps);
    w[0]  = 0.0;
    w[1]  = 0.0;
    w[2]  = 1.0;
    d1w   = f.Reverse(1, w);
    ok   &= NearEqual(d1w[0], 2.0 * x[0], eps, eps);
    ok   &= NearEqual(d1w[1], 2.0 * x[1], eps, eps);
    // -------------------------------------------------------------------
    // check second order reverse mode
    CPPAD_TESTVECTOR(scalar) d2w(2 * n);
    d2w   = f.Reverse(2, w);
    // partial f_2 w.r.t. x_0
    ok   &= NearEqual(d2w[0 * 2 + 0], 2.0 * x[0], eps, eps);
    // partial f_2 w.r.t  x_1
    ok   &= NearEqual(d2w[1 * 2 + 0], 2.0 * x[1], eps, eps);
    // partial f_2 w.r.t x_1, x_0
    ok   &= NearEqual(d2w[0 * 2 + 1], 0.0,        eps, eps);
    // partial f_2 w.r.t x_1, x_1
    ok   &= NearEqual(d2w[1 * 2 + 1], 2.0,        eps, eps);
    // -------------------------------------------------------------------
    // check forward Jacobian sparsity
    CPPAD_TESTVECTOR( std::set<size_t> ) r(n), s(m);
    std::set<size_t> check_set;
    for(size_t j = 0; j < n; j++)
        r[j].insert(j);
    s      = f.ForSparseJac(n, r);
    check_set.clear();
    ok    &= s[0] == check_set;
    check_set.insert(0);
    check_set.insert(1);
    ok    &= s[1] == check_set;
    ok    &= s[2] == check_set;
    // -------------------------------------------------------------------
    // check reverse Jacobian sparsity
    r.resize(m);
    for(size_t i = 0; i < m; i++)
        r[i].insert(i);
    s  = f.RevSparseJac(m, r);
    check_set.clear();
    ok    &= s[0] == check_set;
    check_set.insert(0);
    check_set.insert(1);
    ok    &= s[1] == check_set;
    ok    &= s[2] == check_set;
    // -------------------------------------------------------------------
    // check forward Hessian sparsity for f_2 (x)
    CPPAD_TESTVECTOR( std::set<size_t> ) r2(1), s2(1), h(n);
    for(size_t j = 0; j < n; j++)
        r2[0].insert(j);
    s2[0].clear();
    s2[0].insert(2);
    h = f.ForSparseHes(r2, s2);
    check_set.clear();
    check_set.insert(0);
    ok &= h[0] == check_set;
    check_set.clear();
    check_set.insert(1);
    ok &= h[1] == check_set;
    // -------------------------------------------------------------------
    // check reverse Hessian sparsity for f_2 (x)
    CPPAD_TESTVECTOR( std::set<size_t> ) s3(1);
    s3[0].clear();
    s3[0].insert(2);
    h = f.RevSparseHes(n, s3);
    check_set.clear();
    check_set.insert(0);
    ok &= h[0] == check_set;
    check_set.clear();
    check_set.insert(1);
    ok &= h[1] == check_set;
    // -------------------------------------------------------------------
    return ok;
}

Input File: example/atomic_two/eigen_mat_mul.cpp