|
Prev
| Next
|
|
|
|
|
|
adolc_det_minor.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Adolc Speed: Gradient of Determinant by Minor Expansion
Specifications
See link_det_minor
.
Implementation
// suppress conversion warnings before other includes
# include <cppad/wno_conversion.hpp>
//
# include <adolc/adolc.h>
# include <cppad/utility/vector.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <cppad/speed/uniform_01.hpp>
// list of possible options
# include <map>
extern std::map<std::string, bool> global_option;
namespace {
void setup(int tag, size_t size, const CppAD::vector<double>& matrix)
{ // number of independent variables
int n = size * size;
// object for computing determinant
CppAD::det_by_minor<adouble> a_det(size);
// declare independent variables
int keep = 1; // keep forward mode results
trace_on(tag, keep);
CppAD::vector<adouble> a_A(n);
for(int j = 0; j < n; ++j)
a_A[j] <<= matrix[j];
// AD computation of the determinant
adouble a_detA = a_det(a_A);
// create function object f : A -> detA
double f;
a_detA >>= f;
trace_off();
}
}
bool link_det_minor(
const std::string& job ,
size_t size ,
size_t repeat ,
CppAD::vector<double> &matrix ,
CppAD::vector<double> &gradient )
{
// --------------------------------------------------------------------
// check global options
// Allow colpack true even though it is not used below because it is
// true durng the adolc correctness tests.
const char* valid[] = { "onetape", "optimize", "colpack"};
size_t n_valid = sizeof(valid) / sizeof(valid[0]);
typedef std::map<std::string, bool>::iterator iterator;
//
for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
{ if( itr->second )
{ bool ok = false;
for(size_t i = 0; i < n_valid; i++)
ok |= itr->first == valid[i];
if( ! ok )
return false;
}
}
// -----------------------------------------------------
// size corresponding to current tape
static size_t static_size = 0;
//
// number of independent variables
int n = size * size;
//
// tape identifier
int tag = 0;
//
bool onetape = global_option["onetape"];
// ----------------------------------------------------------------------
if( job == "setup" )
{ if( onetape )
{ // get a matrix
CppAD::uniform_01(size_t(n), matrix);
//
// recrod the tape
setup(tag, size, matrix);
static_size = size;
}
else
{ static_size = 0;
}
return true;
}
if( job == "teardown" )
{ // 2DO: How does one free an adolc tape ?
return true;
}
// ----------------------------------------------------------------------
CPPAD_ASSERT_UNKNOWN( job == "run" );
//
// number of dependent variables
int m = 1;
//
// vectors of reverse mode weights
CppAD::vector<double> u(m);
u[0] = 1.;
//
if( onetape ) while(repeat--)
{ if( size != static_size )
{ CPPAD_ASSERT_UNKNOWN( size == static_size );
}
// choose a matrix
CppAD::uniform_01(n, matrix);
// evaluate the determinant at the new matrix value
int keep = 1; // keep this forward mode result
double f; // function result
zos_forward(tag, m, n, keep, matrix.data(), &f);
// evaluate and return gradient using reverse mode
fos_reverse(tag, m, n, u.data(), gradient.data());
}
else while(repeat--)
{
// choose a matrix
CppAD::uniform_01(n, matrix);
// record the tape
setup(tag, size, matrix);
// evaluate and return gradient using reverse mode
fos_reverse(tag, m, n, u.data(), gradient.data());
}
// --------------------------------------------------------------------
return true;
}
Input File: speed/adolc/det_minor.cpp