Prev Next adolc_det_lu.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Adolc Speed: Gradient of Determinant Using Lu Factorization

Specifications
See link_det_lu .

Implementation
// suppress conversion warnings before other includes
# include <cppad/wno_conversion.hpp>
//
# include <adolc/adolc.h>

# include <cppad/speed/det_by_lu.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/track_new_del.hpp>

// list of possible options
# include <map>
extern std::map<std::string, bool> global_option;

bool link_det_lu(
    size_t                     size     ,
    size_t                     repeat   ,
    CppAD::vector<double>     &matrix   ,
    CppAD::vector<double>     &gradient )
{
    // speed test global option values
    if( global_option["onetape"] || global_option["atomic"] )
        return false;
    if( global_option["memory"] || global_option["optimize"] )
        return false;
    // -----------------------------------------------------
    // setup
    int tag  = 0;         // tape identifier
    int keep = 1;         // keep forward mode results in buffer
    int m    = 1;         // number of dependent variables
    int n    = size*size; // number of independent variables
    double f;             // function value
    int j;                // temporary index

    // set up for thread_alloc memory allocator (fast and checks for leaks)
    using CppAD::thread_alloc; // the allocator
    size_t size_min;           // requested number of elements
    size_t size_out;           // capacity of an allocation

    // object for computing determinant
    typedef adouble            ADScalar;
    typedef ADScalar*          ADVector;
    CppAD::det_by_lu<ADScalar> Det(size);

    // AD value of determinant
    ADScalar   detA;

    // AD version of matrix
    size_min    = n;
    ADVector A  = thread_alloc::create_array<ADScalar>(size_min, size_out);

    // vectors of reverse mode weights
    size_min    = m;
    double* u   = thread_alloc::create_array<double>(size_min, size_out);
    u[0] = 1.;

    // vector with matrix value
    size_min     = n;
    double* mat  = thread_alloc::create_array<double>(size_min, size_out);

    // vector to receive gradient result
    size_min     = n;
    double* grad = thread_alloc::create_array<double>(size_min, size_out);
    // ------------------------------------------------------
    while(repeat--)
    {   // get the next matrix
        CppAD::uniform_01(n, mat);

        // declare independent variables
        trace_on(tag, keep);
        for(j = 0; j < n; j++)
            A[j] <<= mat[j];

        // AD computation of the determinant
        detA = Det(A);

        // create function object f : A -> detA
        detA >>= f;
        trace_off();

        // evaluate and return gradient using reverse mode
        fos_reverse(tag, m, n, u, grad);
    }
    // ------------------------------------------------------

    // return matrix and gradient
    for(j = 0; j < n; j++)
    {   matrix[j] = mat[j];
        gradient[j] = grad[j];
    }
    // tear down
    thread_alloc::delete_array(grad);
    thread_alloc::delete_array(mat);
    thread_alloc::delete_array(u);
    thread_alloc::delete_array(A);

    return true;
}

Input File: speed/adolc/det_lu.cpp