// suppress conversion warnings before other includes# include <cppad/wno_conversion.hpp>
//# include <adolc/adolc.h>
# include <cppad/speed/det_by_lu.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/track_new_del.hpp>
// list of possible options# include <map>
extern std::map<std::string, bool> global_option;
bool link_det_lu(
size_t size ,
size_t repeat ,
CppAD::vector<double> &matrix ,
CppAD::vector<double> &gradient )
{
// speed test global option valuesif( global_option["onetape"] || global_option["atomic"] )
returnfalse;
if( global_option["memory"] || global_option["optimize"] )
returnfalse;
// -----------------------------------------------------// setup
int tag = 0; // tape identifier
int keep = 1; // keep forward mode results in buffer
int m = 1; // number of dependent variables
int n = size*size; // number of independent variables
double f; // function value
int j; // temporary index// set up for thread_alloc memory allocator (fast and checks for leaks)using CppAD::thread_alloc; // the allocator
size_t size_min; // requested number of elements
size_t size_out; // capacity of an allocation// object for computing determinanttypedef adouble ADScalar;
typedef ADScalar* ADVector;
CppAD::det_by_lu<ADScalar> Det(size);
// AD value of determinant
ADScalar detA;
// AD version of matrix
size_min = n;
ADVector A = thread_alloc::create_array<ADScalar>(size_min, size_out);
// vectors of reverse mode weights
size_min = m;
double* u = thread_alloc::create_array<double>(size_min, size_out);
u[0] = 1.;
// vector with matrix value
size_min = n;
double* mat = thread_alloc::create_array<double>(size_min, size_out);
// vector to receive gradient result
size_min = n;
double* grad = thread_alloc::create_array<double>(size_min, size_out);
// ------------------------------------------------------while(repeat--)
{ // get the next matrix
CppAD::uniform_01(n, mat);
// declare independent variablestrace_on(tag, keep);
for(j = 0; j < n; j++)
A[j] <<= mat[j];
// AD computation of the determinant
detA = Det(A);
// create function object f : A -> detA
detA >>= f;
trace_off();
// evaluate and return gradient using reverse modefos_reverse(tag, m, n, u, grad);
}
// ------------------------------------------------------// return matrix and gradientfor(j = 0; j < n; j++)
{ matrix[j] = mat[j];
gradient[j] = grad[j];
}
// tear down
thread_alloc::delete_array(grad);
thread_alloc::delete_array(mat);
thread_alloc::delete_array(u);
thread_alloc::delete_array(A);
returntrue;
}