Prev Next abs_min_linear.hpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
abs_min_linear Source Code
namespace CppAD { // BEGIN_CPPAD_NAMESPACE

// BEGIN PROTOTYPE
template <class DblVector, class SizeVector>
bool abs_min_linear(
    size_t            level   ,
    size_t            n       ,
    size_t            m       ,
    size_t            s       ,
    const DblVector&  g_hat   ,
    const DblVector&  g_jac   ,
    const DblVector&  bound   ,
    const DblVector&  epsilon ,
    const SizeVector& maxitr  ,
    DblVector&        delta_x )
// END PROTOTYPE
{   using std::fabs;
    bool ok    = true;
    double inf = std::numeric_limits<double>::infinity();
    //
    CPPAD_ASSERT_KNOWN(
        level <= 4,
        "abs_min_linear: level is not less that or equal 4"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(epsilon.size()) == 2,
        "abs_min_linear: size of epsilon not equal to 2"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(maxitr.size()) == 2,
        "abs_min_linear: size of maxitr not equal to 2"
    );
    CPPAD_ASSERT_KNOWN(
        m == 1,
        "abs_min_linear: m is not equal to 1"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(delta_x.size()) == n,
        "abs_min_linear: size of delta_x not equal to n"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(bound.size()) == n,
        "abs_min_linear: size of bound not equal to n"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(g_hat.size()) == m + s,
        "abs_min_linear: size of g_hat not equal to m + s"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(g_jac.size()) == (m + s) * (n + s),
        "abs_min_linear: size of g_jac not equal to (m + s)*(n + s)"
    );
    CPPAD_ASSERT_KNOWN(
        size_t(bound.size()) == n,
        "abs_min_linear: size of bound is not equal to n"
    );
    if( level > 0 )
    {   std::cout << "start abs_min_linear\n";
        CppAD::abs_print_mat("bound", n, 1, bound);
        CppAD::abs_print_mat("g_hat", m + s, 1, g_hat);
        CppAD::abs_print_mat("g_jac", m + s, n + s, g_jac);

    }
    // partial y(x, u) w.r.t x (J in reference)
    DblVector py_px(n);
    for(size_t j = 0; j < n; j++)
        py_px[ j ] = g_jac[ j ];
    //
    // partial y(x, u) w.r.t u (Y in reference)
    DblVector py_pu(s);
    for(size_t j = 0; j < s; j++)
        py_pu[ j ] = g_jac[ n + j ];
    //
    // partial z(x, u) w.r.t x (Z in reference)
    DblVector pz_px(s * n);
    for(size_t i = 0; i < s; i++)
    {   for(size_t j = 0; j < n; j++)
        {   pz_px[ i * n + j ] = g_jac[ (n + s) * (i + m) + j ];
        }
    }
    // partial z(x, u) w.r.t u (L in reference)
    DblVector pz_pu(s * s);
    for(size_t i = 0; i < s; i++)
    {   for(size_t j = 0; j < s; j++)
        {   pz_pu[ i * s + j ] = g_jac[ (n + s) * (i + m) + n + j ];
        }
    }
    // initailize delta_x
    for(size_t j = 0; j < n; j++)
        delta_x[j] = 0.0;
    //
    // value of approximation for g(x, u) at current delta_x
    DblVector g_tilde = CppAD::abs_eval(n, m, s, g_hat, g_jac, delta_x);
    //
    // value of sigma at delta_x = 0; i.e., sign( z(x, u) )
    CppAD::vector<double> sigma(s);
    for(size_t i = 0; i < s; i++)
        sigma[i] = CppAD::sign( g_tilde[m + i] );
    //
    // current set of cutting planes
    DblVector C(maxitr[0] * n), c(maxitr[0]);
    //
    //
    size_t n_plane = 0;
    for(size_t itr = 0; itr < maxitr[0]; itr++)
    {
        // Equation (5), Propostion 3.1 of reference
        // dy_dx = py_px + py_pu * Sigma * (I - pz_pu * Sigma)^-1 * pz_px
        //
        // tmp_ss = I - pz_pu * Sigma
        DblVector tmp_ss(s * s);
        for(size_t i = 0; i < s; i++)
        {   for(size_t j = 0; j < s; j++)
                tmp_ss[i * s + j] = - pz_pu[i * s + j] * sigma[j];
            tmp_ss[i * s + i] += 1.0;
        }
        // tmp_sn = (I - pz_pu * Sigma)^-1 * pz_px
        double logdet;
        DblVector tmp_sn(s * n);
        LuSolve(s, n, tmp_ss, pz_px, tmp_sn, logdet);
        //
        // tmp_sn = Sigma * (I - pz_pu * Sigma)^-1 * pz_px
        for(size_t i = 0; i < s; i++)
        {   for(size_t j = 0; j < n; j++)
                tmp_sn[i * n + j] *= sigma[i];
        }
        // dy_dx = py_px + py_pu * Sigma * (I - pz_pu * Sigma)^-1 * pz_px
        DblVector dy_dx(n);
        for(size_t j = 0; j < n; j++)
        {   dy_dx[j] = py_px[j];
            for(size_t k = 0; k < s; k++)
                dy_dx[j] += py_pu[k] * tmp_sn[ k * n + j];
        }
        //
        // check for case where derivative of hyperplane is zero
        // (in convex case, this is the minimizer)
        bool near_zero = true;
        for(size_t j = 0; j < n; j++)
            near_zero &= std::fabs( dy_dx[j] ) < epsilon[1];
        if( near_zero )
        {   if( level > 0 )
                std::cout << "end abs_min_linear: local derivative near zero\n";
            return true;
        }

        // value of hyperplane at delta_x
        double plane_at_zero = g_tilde[0];
        // value of hyperplane at 0
        for(size_t j = 0; j < n; j++)
            plane_at_zero -= dy_dx[j] * delta_x[j];
        //
        // add a cutting plane with value g_tilde[0] at delta_x
        // and derivative dy_dx
        c[n_plane] = plane_at_zero;
        for(size_t j = 0; j < n; j++)
            C[n_plane * n + j] = dy_dx[j];
        ++n_plane;
        //
        // variables for cutting plane problem are (dx, w)
        // c[i] + C[i,:]*dx <= w
        DblVector b_box(n_plane), A_box(n_plane * (n + 1));
        for(size_t i = 0; i < n_plane; i++)
        {   b_box[i] = c[i];
            for(size_t j = 0; j < n; j++)
                A_box[i * (n+1) + j] = C[i * n + j];
            A_box[i *(n+1) + n] = -1.0;
        }
        // w is the objective
        DblVector c_box(n + 1);
        for(size_t i = 0; i < size_t(c_box.size()); i++)
            c_box[i] = 0.0;
        c_box[n] = 1.0;
        //
        // d_box
        DblVector d_box(n+1);
        for(size_t j = 0; j < n; j++)
            d_box[j] = bound[j];
        d_box[n] = inf;
        //
        // solve the cutting plane problem
        DblVector xout_box(n + 1);
        size_t level_box = 0;
        if( level > 0 )
            level_box = level - 1;
        ok &= CppAD::lp_box(
            level_box,
            A_box,
            b_box,
            c_box,
            d_box,
            maxitr[1],
            xout_box
        );
        if( ! ok )
        {   if( level > 0 )
            {   CppAD::abs_print_mat("delta_x", n, 1, delta_x);
                std::cout << "end abs_min_linear: lp_box failed\n";
            }
            return false;
        }
        //
        // check for convergence
        double max_diff = 0.0;
        for(size_t j = 0; j < n; j++)
        {   double diff = delta_x[j] - xout_box[j];
            max_diff    = std::max( max_diff, std::fabs(diff) );
        }
        //
        // check for descent in value of approximation objective
        DblVector delta_new(n);
        for(size_t j = 0; j < n; j++)
            delta_new[j] = xout_box[j];
        DblVector g_new = CppAD::abs_eval(n, m, s, g_hat, g_jac, delta_new);
        if( level > 0 )
        {   std::cout << "itr = " << itr << ", max_diff = " << max_diff
                << ", y_cur = " << g_tilde[0] << ", y_new = " << g_new[0]
                << "\n";
            CppAD::abs_print_mat("delta_new", n, 1, delta_new);
        }
        //
        g_tilde = g_new;
        delta_x = delta_new;
        //
        // value of sigma at new delta_x; i.e., sign( z(x, u) )
        for(size_t i = 0; i < s; i++)
            sigma[i] = CppAD::sign( g_tilde[m + i] );
        //
        if( max_diff < epsilon[0] )
        {   if( level > 0 )
                std::cout << "end abs_min_linear: change in delta_x near zero\n";
            return true;
        }
    }
    if( level > 0 )
        std::cout << "end abs_min_linear: maximum number of iterations exceeded\n";
    return false;
}
} // END_CPPAD_NAMESPACE

Input File: example/abs_normal/abs_min_linear.omh