@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
abs_min_linear: Example and Test
Purpose
The function
@(@
f : \B{R}^3 \rightarrow \B{R}
@)@ defined by
@[@
\begin{array}{rcl}
f( x_0, x_1 )
& = &
| d_0 - x_0 | + | d_1 - x_0 | + | d_2 - x_0 |
\\
& + &
| d_3 - x_1 | + | d_4 - x_1 | + | d_5 - x_1 |
\\
\end{array}
@]@
is affine, except for its absolute value terms.
For this case, the abs_normal approximation should be equal
to the function itself.
In addition, the function is convex and
abs_min_linear
should find its global minimizer.
The minimizer of this function is
@(@
x_0 = \R{median}( d_0, d_1, d_2 )
@)@
and
@(@
x_1 = \R{median}( d_3, d_4, d_5 )
@)@
# include <cppad/cppad.hpp>
# include "abs_min_linear.hpp"
namespace {
CPPAD_TESTVECTOR(double) join(
constCPPAD_TESTVECTOR(double)& x ,
constCPPAD_TESTVECTOR(double)& u )
{ size_t n = x.size();
size_t s = u.size();
CPPAD_TESTVECTOR(double) xu(n + s);
for(size_t j = 0; j < n; j++)
xu[j] = x[j];
for(size_t j = 0; j < s; j++)
xu[n + j] = u[j];
return xu;
}
}
bool abs_min_linear(void)
{ bool ok = true;
//using CppAD::AD;
using CppAD::ADFun;
//typedefCPPAD_TESTVECTOR(size_t) s_vector;
typedefCPPAD_TESTVECTOR(double) d_vector;
typedefCPPAD_TESTVECTOR( AD<double> ) ad_vector;
//
size_t dpx = 3; // number of data points per x variable
size_t level = 0; // level of tracing
size_t n = 2; // size of x
size_t m = 1; // size of y
size_t s = dpx * n; // number of data points and absolute values// data points
d_vector data(s);
for(size_t i = 0; i < s; i++)
data[i] = double(s - i) + 5.0 - double(i % 2) / 2.0;
//// record the function f(x)
ad_vector ad_x(n), ad_y(m);
for(size_t j = 0; j < n; j++)
ad_x[j] = double(j + 1);
Independent( ad_x );
AD<double> sum = 0.0;
for(size_t j = 0; j < n; j++)
for(size_t k = 0; k < dpx; k++)
sum += abs( data[j * dpx + k] - ad_x[j] );
ad_y[0] = sum;
ADFun<double> f(ad_x, ad_y);
// create its abs_normal representation in g, a
ADFun<double> g, a;
f.abs_normal_fun(g, a);
// check dimension of domain and range space for g
ok &= g.Domain() == n + s;
ok &= g.Range() == m + s;
// check dimension of domain and range space for a
ok &= a.Domain() == n;
ok &= a.Range() == s;
// --------------------------------------------------------------------// Choose a point x_hat
d_vector x_hat(n);
for(size_t j = 0; j < n; j++)
x_hat[j] = double(0.0);
// value of a_hat = a(x_hat)
d_vector a_hat = a.Forward(0, x_hat);
// (x_hat, a_hat)
d_vector xu_hat = join(x_hat, a_hat);
// value of g[ x_hat, a_hat ]
d_vector g_hat = g.Forward(0, xu_hat);
// Jacobian of g[ x_hat, a_hat ]
d_vector g_jac = g.Jacobian(xu_hat);
// trust region bound (make large enough to include solutuion)
d_vector bound(n);
for(size_t j = 0; j < n; j++)
bound[j] = 10.0;
// convergence criteria
d_vector epsilon(2);
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
epsilon[0] = eps99;
epsilon[1] = eps99;
// maximum number of iterations
s_vector maxitr(2);
maxitr[0] = 10; // maximum number of abs_min_linear iterations
maxitr[1] = 35; // maximum number of qp_interior iterations// minimize the approxiamtion for f, which is equal to f because// f is affine, except for absolute value terms
d_vector delta_x(n);
ok &= CppAD::abs_min_linear(
level, n, m, s, g_hat, g_jac, bound, epsilon, maxitr, delta_x
);
// number of data points per variable is odd
ok &= dpx % 2 == 1;
// check that the solution is the median of the corresponding data`for(size_t j = 0; j < n; j++)
{ // data[j * dpx + 0] , ... , data[j * dpx + dpx - 1] corresponds to x[j]// the median of this data has index j * dpx + dpx / 2
size_t j_median = j * dpx + (dpx / 2);
//
ok &= CppAD::NearEqual( delta_x[j], data[j_median], eps99, eps99 );
}
return ok;
}