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We describe a research project to design a distributed optimization environment in which solvers, modeling

languages, registries, analyzers, and simulation engines can be implemented as services and utilities under a

unified framework. Our work, which we call Optimization Services or OS, defines standards for all activities

necessary to support decentralized optimization on the Internet: representation of optimization instances,

results, and solver options; communication between clients and solvers; and discovery and registration of

optimization-related software using the concept of Web Services. In this paper we place emphasis on issues in

distributed computing that are posed by the special character of optimization. We also describe a reference

implementation that is freely available as an open-source project of COIN-OR.
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1. Introduction

Optimization is a key paradigm for modeling in operations research and in related aspects of engi-

neering, science, economics, and business. But to be a practical tool, optimization increasingly

needs to be integrated into modern corporate information technology (IT) infrastructures. The OR

community has focused on standalone tools like modeling languages and solvers designed to work

on a single machine, while the IT community is moving to tools like Extensible Markup Language

(XML), Service Oriented Architectures (SOA), and Web Services that facilitate distributed com-

puting. The OR community could much more readily achieve its objective of the widespread use
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of optimization if optimization tools were built into technologies that the IT community is already

using.

We are not the first to make this observation. In his widely read blog (http://mat.tepper.

cmu.edu/blog/?p=301), Mike Trick wrote, “Within OR, we often don’t track IT concepts such as

SOA or business intelligence, but we should: it can have a great effect on how our work is used

in organizations.” This was in response to Donald Ratliff’s 2008 IFORS Plenary talk in which he

identified Service Oriented Architecture as a new opportunity for Operations Research. Likewise,

William Pulleyblank, in his 2006 INFORMS Plenary “Optimization Everywhere: Five Critical

Issues,” identified as two of his critical issues: 1) How should we deal with issues of distributed data

and computation?; and 2) How do we adapt these capabilities to the emerging networked business

world?

XML, SOA, and Web Services have facilitated the growing prevalence of software as a service:

that is, software residing on a server that is accessed by numerous client machines over a network, as

opposed to software residing in multiple copies on its users’ machines. Current examples of software

as a service include customer relationship management (see salesforce.com), tax preparation,

Gmail, and Google Calendar. Indeed, all of the major players in software have been promising soft-

ware as a service; the trend is clearly away from the fat client loaded with heavyweight applications,

and towards distributed computing.

The goal of our research is to determine how to implement optimization as a software service.

Optimization is a particularly appropriate application for the software-as-a service paradigm. There

are numerous optimization problem classes including linear, nonlinear, mixed-integer linear and

nonlinear, stochastic, cone, etc. Obtaining, configuring, and maintaining solvers for numerous opti-

mization classes is an expensive and time consuming proposition. Additionally, optimization prob-

lems often require significant computing time. Running multiple problem instances, each requiring

substantial CPU resources, on a client machine such as a laptop, is not practical. The ability to

solve optimization problems in a distributed environment is an ideal solution.
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Implementing optimization as a service is difficult because of a lack of standards in almost every

aspect of the modeling and optimization process:

� There are numerous modeling languages each with its own format for storing the under-

lying model instance. There is no standard for representing problem instances, especially

nonlinear optimization instances.

� There are numerous solvers each with its own application program interface (API). There

is no standard API.

� The variety of operating systems, chip architectures, and compilers makes it difficult for

vendors of optimization software to support every platform.

� There is no standard for representing optimization results or solver options.

� There is no standard protocol for solvers to register their service over a network or for

clients to discover a solver service over a network.

Implementing optimization as a service requires a greater variety and complexity of information to

be moved around and a much greater range of behavior to be dealt with than do typical business

applications. The results of our research are presented in this paper as a framework for distributed

optimization, which we refer to as Optimization Services, or OS. By framework, we mean a set of

standards (or protocols) for

. representation of optimization instances, results, and solver options;

. communication between clients and solvers; and

. registration and discovery of optimization-related services in a distributed environment.

To this end, OS provides a general and robust format for representing optimization model instances,

a common solver interface with get(), set(), and calculate() methods, and standard registry

and discovery protocols. It also provides communication protocols that allow a client machine of

any type to communicate with a solver server or registry service on any kind of platform.

The ultimate goal of this project is to make optimization as easy as hooking up to the network.

Our vision is for all optimization system components, including modeling language environments,

servers, registries, analyzers, solvers, and simulation engines, to be implemented as services under
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the OS framework, and for customers to use these computational services much like utilities, with

specialized knowledge of optimization algorithms, problem types, and solver options being poten-

tially valuable but not required. We foresee OS being built upon standards that are independent of

programming language, operating system, and hardware, and that are open and readily available

for use by the optimization community.

1.1 Protocols

Figure 1 presents a summary of the OS protocols discussed in this paper. There are additional

OS protocols, but those shown in the figure are sufficient to convey the major aspects of the OS

framework. A description of all the OS protocols is given in Ma (2005).

Figure 1 A summary of OS protocols.

The OS protocols are classified as either communication protocols or representation protocols.

The former are at a “higher level” than the latter; loosely speaking, communication protocols

specify what data are exchanged between client and server, and representation protocols specify

detailed information about the data format. For example, a communication protocol might specify

that in order to solve an optimization problem a client must send to the solver server a model

instance and solver options. The representation protocol would specify detailed information about
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the formats of the instance and options.

Both kinds of OS protocols may apply to a client communicating with a server that performs

an optimization service or that provides a registry service. By an optimization service we mean

loosely a solver that performs optimization on a model instance, analyzes a problem, performs

only a preprocessing service, or perhaps does simulation but not true optimization. A registry

service allows servers to register their optimization services or allows clients to discover servers

that perform optimization services.

1.2 Outline

In Section 2 we provide sufficient background information on XML, Service Oriented Architecture,

and Web Services in order to make the protocols outlined in Figure 1 understandable. We also

describe some previous work relevant to SOA and Web Services specifically for optimization.

In Section 3 we present the design of the key OS representation protocols. We describe OSiL for

representing problem instances, OSrL for representing optimization results, and OSoL for specifying

options to solvers or registry services. We also describe OSeL for registering an optimization service,

and OSqL for querying a registry about which optimization services are available.

In Section 4 we describe key OS communication protocols, particularly OShL for communication

between a client and a server hosting an optimization service, and OSdL for communication between

a client and a server hosting a registry service.

The OS framework is just that — a framework. It does not specify implementation details,

programming languages, and the like. However, in order to provide a reference implementation,

many of the protocols described in this paper are implemented in a set of open-source libraries.

These libraries, along with the associated source code, have been donated to COIN-OR (COmpu-

tational INfrastructure for Operations Research) and constitute the COIN-OR OS project, which

we describe briefly in Section 5.

Section 6 concludes with plans for extensions of the research and a brief discussion of the current

impact of Optimization Services. Finally we direct the reader to an online supplement (Fourer,

Ma, and Martin (2008)) for more information on this research.
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1.3 An Overview

The result of this research is a complete framework for an optimization-based service oriented

architecture. The research issues, challenges, and details in designing such a framework are provided

in the remainder of this paper. However, it is important to emphasize that the typical user of the

OS architecture will never have to be aware of what is presented in the remainder of the paper

(much like a user of linear programming does not need to know the intimate details of the simplex

algorithm). For those readers only interested in what OS can provide, and not wishing to read the

remainder of the paper, we provide the following brief overview. Optimization Services does the

following for an optimization consumer.

� Provide optimization consumers with direct access to a wide variety of optimization solvers

without the need to install, configure, or upgrade the solvers on his or her computer. Operating

system and hardware compatibility issues disappear.

� Provide optimization consumers with the capability to simultaneously run multiple time-

consuming optimization problems without tying up any resources on his or her computer.

� Provide optimization consumers with the ability to query an optimization service provider and

get details about job status, kill a job if necessary, and retrieve results upon job completion.

To illustrate invoking a remote optimization service, an optimization consumer could build a

model on a client machine in a popular modeling language such as GAMS (similar capabilities

exist for AMPL) and execute the command

gams testproblem.gms optfile=1

The optfile=1 attribute specifies an option file with the following lines

service http://server URL/os/OSSolverService.jws
solver couenne
writeosrl osrl.xml

In this option file, the first option is the service option which specifies the URL of the optimiza-

tion service provider. The second option is the solver option which specifies to the service provider

that the solver couenne is to be used. The last option, writeosrl gives the name of the result file
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that gets written to the local machine. This file can be opened in a browser for the user to see the

solution results. See the on-line Electronic Appendix for more information on submitting, killing,

and retrieving jobs. Optimization Services provides the following for an optimization provider.

� A set of high-level communication standards so the optimization provider can implement an

optimization service that is easily consumed over a network.

� The communication standards in a format (Web Services Description Language) that allows

much of the necessary software to be automatically generated thus greatly reducing software devel-

opment time.

� A set of standards for providing information about a solver’s capabilities and registering the

solver service so that it can be consumed.

� A set of standards for representing very broad classes of optimization problem (linear, integer,

and nonlinear) instances, solver options, and a result language for optimization results.

There is a reference implementation of open-source libraries available for both consumers and

providers through COIN-OR.

2. Background

This section begins with a brief introduction to the concepts of XML, Service Oriented Architecture,

and Web Services. Then we describe previous work in optimization that has direct relevance to

these concepts.

2.1 XML

All of the Optimization Services protocols are expressed in the Extensible Markup Language, XML.

We chose XML because

� all of the Web Services protocols are expressed in XML;

� the language of the Web, HTML (Hypertext Markup Language), is being replaced by the

XML version, XHTML;

� XML is becoming the lingua franca of data.
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In sum, XML has become the best way to store text data. The XML standard is controlled by the

W3C (World Wide Web Consortium, www.w3c.org/XML). A useful overview of XML technologies

is given by Skonnard and Gudgin (2002).

XML is a markup language. An XML string or file is composed of data and of markup that

describes the data. XML markup consists of elements (or tags) and attributes that must be orga-

nized according to certain general principles but that are quite flexible in their meaning.

The following optimization problem instance (which is a modification of an example of Rosen-

brock (1960)) is used to illustrate XML and other concepts throughout this paper:

Minimize (1−x0)2 + 100(x1−x2
0)

2 + 9x1 (1)

Subject to x0 + 10.5x2
0 + 11.7x2

1 + 3x0x1 ≤ 25 (2)

ln(x0x1) + 7.5x0 + 5.25x1 ≥ 10 (3)

x0, x1 ≥ 0 (4)

In this problem there are two continuous variables, x0 and x1, each with a lower bound of 0. Figure 2

shows how this information about the variables could be stored as XML. Specifically, there is a

<variables> element, that marks the start and end of a list of <var> elements. The two <var>

elements correspond to x0 and x1, and each <var> element has attributes lb, name, and type that

describe properties of a decision variable: its lower bound, name, and domain type.

The actual values of the attributes, such as "0" (zero) for lb and "C" (denoting a continuous

<variables numberOfVariables="2">
<var lb="0" name="x0" type="C"/>
<var lb="0" name="x1" type="C"/>

</variables>

Figure 2 The <variables> element for (1)–(4).

domain) for type, are the data in the file. An attribute may also assume a default value when it

does not appear. For example, the <var> element has a ub attribute, specifying the upper bound,

that is absent in Figure 2 and that consequently takes the default value "INF" (denoting ∞).
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In the XML representation of the variables’ properties illustrated in Figure 2, the text markers

surrounding each tag (< and >), as well as other elements of the XML syntax, serve to make XML

instances very easy to parse and to validate. Numerous parsers, both open-source and proprietary,

are available for processing an XML document.

2.2 Service Oriented Architectures

A common (but not service oriented) distributed computing architecture is shown in Figure 3. In

this design, there is a central server that intermediates between all of the clients and all of the

other servers. All client requests must go through this central server. The NEOS architecture (to

be detailed in Section 2.4) is a good illustration of the central server paradigm. All optimization

instances (which could be very large) and solutions must pass through the central server, which

then schedules a solver server to optimize the model and pass the result back to the client through

the central server.

Figure 3 A centralized distributed computing architecture.

The central server paradigm does not scale up well. Indeed, the Internet works because it has

a decentralized architecture; there is no such thing as a “central web server” through which all

requests pass. Rather, there are directory services such as Google and Yahoo where a client can

look up the resource of interest and then contact that resource directly rather than going through
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a central server.

Following the Internet model, IT departments are increasingly turning to service oriented archi-

tectures (SOA) when building their infrastructures. In the SOA paradigm (Figure 4), a service

provider (perhaps a solver service) registers with a registry/discovery service. In a sense, this reg-

istry/discovery service does act as central server, but it functions as a lightweight service that

only maintains information about available service providers. The client or service consumer “dis-

covers” the service that is described in the registry. Then, rather than interact directly with the

registry/discovery server to consume the service from the service provider, the service consumer

contacts the service provider directly and they work in a “peer-to-peer” fashion.

In Figure 5 we show the SOA version of the distributed optimization system first illustrated in

Figure 3. The key contrast between the two architectures is that in the SOA version the clients

and solvers are exchanging optimization instances and results directly in a peer-to-peer mode, thus

enabling scaling of the system.

SOA is a philosophy of how to build a decentralized architecture, rather than a set of actual

protocols or standards. We next describe the Web Services protocols for actually implementing an

SOA.

Figure 4 The Service Oriented Architecture (SOA) paradigm.
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Figure 5 The Service Oriented Architecture version of Figure 3.

2.3 Web Services

The Web Services concept consists of three XML-based protocols: SOAP (Simple Object Access

Protocol), WSDL (Web Services Description Language), and UDDI (Universal Description, Dis-

covery, and Integration).

In an SOA, service consumers make requests to service providers and get responses from the

providers. SOAP is an XML-based protocol that specifies how information should be encoded in the

request and response messages. These messages are then sent over a network using an application

layer protocol such as HTTP (Hypertext Transfer Protocol), FTP (File Transfer Protocol), or

SMTP (Simple Mail Transfer Protocol).

Figure 6 illustrates SOAP over HTTP. OS representation protocols (Section 3) are packaged

inside OS communication protocols (Section 4) that are in turn packaged inside a SOAP envelope

that constitutes the body of the HTTP message. For example, a client may send an optimization

instance in the OSiL protocol, and solver options in the OSoL protocol using an OShL communi-

cation protocol that instructs a solver to optimize the problem. All of these protocols would be in

a SOAP envelope in an HTTP body sent over the Internet to the solver service using the HTTP

protocol.
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Figure 6 OS protocols inside a SOAP envelope inside an HTTP body.

WSDL is a protocol for expressing, in XML format, the methods (functions) and arguments

provided by a Web service. WSDL is used by the provider of a service to tell the consumer how

to use the service. OS communication protocols are expressed using WSDL, as will be seen in

Section 4.

Finally, UDDI is an XML-based protocol describing how providers can join the registry and how

consumers can query the registry. We discuss the OS registry protocols in Section 4.2.

2.4 Optimization Systems and Services

The idea of integrating optimization within broader tools has a long and successful history.

Optimization has long been a part of more general scientific software such as MATLAB (www.

mathworks.com/products/optimization) and statistical software such as SAS (www.sas.com/

technologies/analytics/optimization). But undoubtedly the best known examples are the

Excel Solver (www.solver.com) and What’s Best (www.lindo.com), that make optimization con-

veniently available within the Microsoft Excel spreadsheet program, a ubiquitous business tool. As

the IT community moves in the direction of distributed computing, the OR community would do

well to follow this lead by integrating optimization tools into a distributed computing environment.
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Internet optimization servers began to appear almost immediately after the advent of the World

Wide Web, mostly using browsers as interfaces for input and output. Summaries are in Czyzyk et

al. (2000) and Fourer and Goux (2001).

The most ambitious and influential Internet optimization service is NEOS (Czyzyk et al. (1998),

neos.mcs.anl.gov) which has been widely used by the optimization community for over a decade.

A central server maintains and queues submissions for solvers that run on a variety of workstations

scattered around the Internet. At first, submissions were MPS-format files for linear problems and

C or Fortran programs for nonlinear ones, but now the great majority of submissions are in high-

level modeling languages, predominantly AMPL (www.ampl.com) and GAMS (www.gams.com).

Submissions through the NEOS web portal (neos.mcs.anl.gov/neos/solvers) remain popular,

and they can also be made by sending XML text files through email.

The most recent NEOS release, described in detail by Dolan et al. (2008), features a NEOS

application programming interface (API) that permits all server functions to be accessed through

remote function calls using the XML-RPC protocols (www.xmlrpc.com). This has brought NEOS

more in line with the precepts of SOA and has made it much easier to integrate into optimization

modeling environments. Nevertheless, its design still adheres in many respect to the central server

paradigm of Figure 3. Also NEOS employs whatever file formats are supported by the various

solvers; the over 40 solvers in the NEOS lineup require instance inputs of about a dozen differ-

ent kinds. Similarly there is no NEOS standard format for communicating options to solvers or

communicating results from solvers.

The OS project thus faced the challenge of remedying a variety of NEOS weaknesses. How it has

faced this challenge, and the issues it has had to resolve in doing so, are detailed in the remainder

of this paper.

3. Optimization Services Representation Protocols

In the OS framework there are representation protocols for communication with solver servers

and with registry servers. Section 3.1 motivates the need for protocols, Sections 3.2–3.4 describe
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design principles and issues for the specific protocols that represent model instances, optimization

results, and solver options, and Section 3.5 explains how these protocols are extended to encompass

in-memory representations. Section 3.6 then describes the representation protocols for registry

servers.

3.1 Representation Protocols for Solver Servers

Currently there are no comprehensive standards for communicating optimization problem

instances, solver algorithmic options, or optimization results. A few standard file formats such as

MPS for linear and mixed-integer programs are well-known, but are inefficient, limited in scope, and

not quite “standard” in the cases they cover. All of the widely-used optimization modeling systems

have their own, incompatible representations for problem instances and related information.

In a tightly coupled environment where the optimization model instance generator and optimiza-

tion solver are a single piece of software, standards are not an issue. A good example is LINGO

(www.lindo.com), which is both a modeling language and a solver. Similarly, ILOG’s (IBM) OPL

Development Studio (www.ilog.com/products/oplstudio) is a modeling system that is intended

to be used only with its developer’s solvers. However, beginning with the development of popu-

lar standalone modeling languages such as GAMS and AMPL in the 1970s and 1980s, it became

increasingly common to have separate pieces of software for generating a model instance and for

optimizing that instance. NEOS’s appearance in the mid-1990s then completely broke the link

between model generator and solver, allowing a model to be developed on one machine and then

sent over the network to be solved on another machine.

The downside of these developments is that we now have a huge proliferation of modeling lan-

guages and solvers. NEOS alone has solvers that recognize three modeling languages, functions

programmed in Fortran and C, and numerous file formats: MPS and LP for linear and integer

programming, SMPS extensions to MPS for stochastic programming, SPARSE SDPA specific to

semidefinite programming, and DIMACS, NETFLO, and RELAX4 for network linear program-

ming. This is now a significant problem for software developers in the optimization community. If
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there are M modeling languages and N solvers, then M ×N “drivers” are required for complete

interoperability. However, if there are standards for representing model instances, optimization

results, and solver options, then only M + N drivers are required for interoperability. In the fol-

lowing sections we describe the design of the OS standards for these purposes.

3.2 OSiL: Optimization Services instance Language

OSiL is an XML-based language for representing instances of optimization problems including lin-

ear programs, mixed-integer programs, quadratic programs, and very general nonlinear programs.

We illustrate the major features of OSiL using the optimization problem given by equations (1)–(4)

in Section 2.1. A thorough account of all features can be found in Fourer, Ma, and Martin (2007).

There are two continuous variables, x0 and x1, in this instance, each with a lower bound of 0.

Back in Figure 2 we showed how to represent this information in XML. We chose the name <var>

for each markup element that represents a variable, but we could have chosen <variable>; clearly,

there are countless ways to represent an optimization instance in XML. However, when parsing an

XML file there must not be any ambiguity. So in order to be useful for communication between

solvers and modeling languages, the markup in the instance files must conform exactly to a naming

convention.

A common way to impose a standard on the naming and structure of an XML file is to use a

W3C (World Wide Web Consortium) XML schema, that specifies the elements and attributes that

define a specific XML vocabulary such as OSiL. An XML file that conforms to a schema is called

valid for that schema. Indeed, when we talk about an “Optimization Services instance Language,”

we are really talking about the OSiL schema.

By analogy to object-oriented programming, a schema is akin to a header file in C++ that defines

the members and methods in a class. Just as a class in C++ very explicitly describes member

and method names and properties, a schema explicitly describes element and attribute names and

properties.
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Recall that Figure 2 is the XML representation of the variables for the model shown in equations

(1)–(4). Figures 7 and 8 are the part of the OSiL W3C XML schema that defines the standard

for what every <variables> section of an instance in OSiL should look like. In particular, these

two figures are the schema specifications for the elements <variables> and <var> of Figure 2,

respectively. (In this Figure, the xs: at the start of each element indicates that the corresponding

element is an element that is part of the W3C XML schema standard.)

<xs:complexType name="Variables">
<xs:sequence>

<xs:element name="var" type="Variable" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="numberOfVariables"

type="xs:positiveInteger" use="required"/>
</xs:complexType>

Figure 7 The Variables complexType in the OSiL schema.

<xs:complexType name="Variable">
<xs:attribute name="name" type="xs:string" use="optional"/>
<xs:attribute name="init" type="xs:string" use="optional"/>
<xs:attribute name="type" use="optional" default="C">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="C"/>
<xs:enumeration value="B"/>
<xs:enumeration value="I"/>
<xs:enumeration value="S"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="lb" type="xs:double" use="optional" default="0"/>
<xs:attribute name="ub" type="xs:double" use="optional" default="INF"/>

</xs:complexType>

Figure 8 The Variable complexType in the OSiL schema.

In Figure 7, a “complexType” named Variables is defined. Just as object-oriented programming

languages such as C++ and Java allow the user to define data types that extend standard data

types such as integer, double, and string, the W3C XML Schema standard permits developers of

XML schemas to define their own data types called complexTypes. The complexType is used to

specify the elements and attributes that are allowed to appear in a valid XML instance file such as
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the one shown in Figure 2. The Variables complexType of Figure 7 is made up of a sequence of

elements named <var>. Each <var> element is in turn an instance of a user-defined complexType

named Variable, that is defined in Figure 8. Every <var> element appearing in Figure 2 thus

conforms to the Figure 8 schema.

The Variables complexType in Figure 7 also has an attribute numberOfVariables that specifies

the number of <var> elements in the XML instance file. The numberOfVariables attribute has

the standard type positiveInteger. Note that in Figure 2, numberOfVariables is defined to be

"2", which is indeed a positive integer. The Variable complexType in Figure 8 has a variety of

attributes. For example, the attribute named type is specified as a simpleType whose value must

be one of four character strings — "C", "B", "I", or "S" — indicating variables whose domain is

continuous, binary (zero-one), integer, or symbolic, respectively. It has a default value of "C".

Also in Figure 2, note the <var> “child” elements nested inside of the <variables> element;

in our convention, the elements that appear in an actual XML instance file have element names

that are all lower case, and the corresponding complexType in the schema begins with an upper

case letter. The complexType appears only in the schema and not in the XML instance file, which

is made up of elements that are instances of the complexTypes defined in the schema. Thus, the

<variables> element of Figure 2 conforms to the definition of complexType Variables in Figure 7

by containing a sequence of <var> elements that are instances of complexType Variable defined

in Figure 8.

In addition to Variables, there are complexTypes Objectives and Constraints that sim-

ilarly define <objectives> and <constraints> sections. To complete the specification of

a linear problem (possibly with integer variables), the OSiL schema incorporates the com-

plexType LinearConstraintCoefficients, that defines a <linearConstraintCoefficients>

section that contains the nonzero coefficients in the constraints. The specification of the

<linearConstraintCoefficients> element is detailed in the online supplement (Fourer, Ma, and

Martin (2008)). The online supplement also contains the specification for the nonlinear terms in

the problem instance.
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All of the OS schemas are available at www.optimizationservices.org. Although schemas can

be read as text files, large ones are easier to navigate with the help of software such as XML

Spy (www.altova.com) or Oxygen (www.oxygenxml.com). These packages present schemas in a

convenient graphical environment.

3.3 OSrL: Optimization Services result Language

It is little known that the venerable MPS format for linear program instances has a corresponding

format for the results of solving linear programs. All of the major optimization modeling systems

have distinct nonstandard formats in which they expect results to be reported. In a successful

distributed optimization framework, a standard for this purpose is as important as a standard

for reporting problem instances. Thus another part of our project has been to design OSrL, an

XML-based protocol for representing the solutions of large-scale optimization problems of all the

kinds that can be described using OSiL. As with OSiL, OSrL is defined by an XML schema.

In conceiving OSrL our design goal has been to maximize flexibility in reporting optimization

results, but to keep the design simple. A linear program is a well-defined entity, for example, but

the solution of a linear program is not. We cannot have a linear program without constraints or

variables, but we can have a linear programming solution without reduced costs or right-hand

side sensitivity information. In general, different optimization solvers may present their results in

different formats, and some may include more detail than others. The level of solution detail is up

to the solver developer and would be difficult to standardize.

Thus, whereas with OSiL we have tried to be as encompassing and complete as possible, with

OSrL we have taken a minimalist approach. The objective of OSrL is to the allow the solver

developer to report as much or little detail as desired.

We illustrate this design philosophy in Figure 9 with an example of OSrL’s <variables> element.

A solver developer will almost certainly want to report the values of the decision variables in a

solution, so OSrL provides a <values> element containing a <var> element for each variable (with

variables at zero optionally omitted). However, aside from the values of the variables, it is not
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so clear what other solution information associated with variables the solver developer will wish

to report. Hence, we provide an <other> element with attributes name and description. The

<variables> element can have none or an unlimited number of <other> children. This allows for

complete flexibility in reporting. In Figure 9 the <other> element is used to give the Lagrange

multiplier values on the variable upper and lower bounds. This is a good illustration of a result

that not all nonlinear solvers might convey.

<variables>
<values>

<var idx="0">.8724300006558884</var>
<var idx="1">.7414170851045374</var>

</values>
<other name="varL" description="Lagrange Multiplier on the Variable Lower Bound">

<var idx="0">2.532850081993274e-9</var>
<var idx="1">3.3380536229320414e-9</var>

</other>
<other name="varU" description="Lagrange Multiplier on the Variable Upper Bound">

<var idx="0">0</var>
<var idx="1">0</var>

</other>
</variables>

Figure 9 An OSrL <variables> element for the results of problem (1)-(4).

There are similar constructs for, among others, <constraints> and <objectives>, as shown in

the full OSrL schema accessible at www.optimizationservices.org.

3.4 OSoL: Optimization Services option Language

In addition to a model instance, a solver is often sent a list of option settings to guide its algorithms.

We have designed OSiL’s representation of instances to be solver-independent, so that the same

representation can be sent to any appropriate solver. But a description of options is unavoidably

solver-dependent. Thus our OS framework incorporates a separate XML-based language, OSoL,

for representing solver options.

OSoL’s design philosophy is analogous to that of OSrL: maximize flexibility in specifying solver

options but keep the details simple. Solver options vary greatly and lack standardization even
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among the most common ones such as “iteration limit” or “feasibility tolerance.” In order to accom-

modate solver options in a generic fashion, OSoL has a <solverOption> element with attributes

for the solver name, the name of the solver option, and the option value. Many solvers group

options within categories (and even subcategories). In order to handle such cases there is also an

optional category attribute.

Figure 10 illustrates the use of the <solverOption> element. Within the <solverOptions>

element are three <solverOption> elements. The first two elements specify a tolerance and output

level for the Ipopt solver. The third <solverOption> element specifies a tolerance for the Clp

solver. The name, value, and category attributes are used to define and set an option’s value and

are specific to individual solvers. If a solver does not recognize an <solverOption> tag’s solver

attribute then it is free to respond accordingly, such as by issuing a warning message and ignoring

the tag. Like OSrL, OSoL also provides an <other> element that solver developers can adapt as

needed.

<osol xmlns="os.optimizationservices.org">
<general>

<contact transportType="smtp">
kipp.martin@chicagogsb.edu

</contact>
<instanceLocation locationType="http">

http://www.coin-or.org/OS/rosenbrockmod.osil
</instanceLocation>

</general>
<optimization>

<solverOptions numberOfSolverOptions="3">
<solverOption solver="ipopt" name="tol" category="numeric" value="1e-9"/>
<solverOption solver="ipopt" name="print level" category="integer" value="0"/>
<solverOption solver="clp" name="OsiDualTolerance" category="OsiDblParam"

value="1e-07"/>
</solverOptions>

</optimization>
</osol>

Figure 10 An example of an OSoL file.

An optional <general> element may be included to make certain associations between an

options file and a model instance. In our example, the <general> element has two children. One
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is a <contact> child whose attribute transportType has value smtp, which tells the solver to

email the results of the optimization to the address contained in the element. There is also an

<instanceLocation> child with locationType attribute equal to http. This indicates the location

of the model instance, enabling a client machine to tell a solver server where the model instance can

be obtained. The client then does not need to actually send the model instance, only its location.

The OSoL protocol is also used to pass options to registry servers, discussed in Section 3.6.

3.5 In-Memory Representation

We have discussed XML file standards for representing optimization model instances. A modeling

system would normally first create an instance within internal data structures, however, and then

write it to an OSiL file for transmission over the network to a solver service as in Figure 5.

Subsequently the solver service would read this OSiL file, extract the optimization instance, and

put that information into its own internal data structures for use by the optimizing algorithm.

One of our major design decisions was to provide some standardization of this process, by

designing an OSInstance class whose structure exactly parallels that of the OSiL schema. Thus

there is a standard way to represent OSiL instances in memory as well as in XML files.

To support the OSInstance class, we have written open-source C++ libraries that provide an

interface to the model instance. This interface consists of a set of methods (functions) that allow

the user of the OS library to perform tasks of three kinds:

. Extract information about an instance in memory — number of variables, lower and upper

bounds on constraints, and indeed any information that may be represented in an OSiL file

— through a collection of get() methods.

. Similarly, create or modify an instance in memory though a collection of set() methods.

. Provide function, gradient, and Hessian evaluations, and Jacobian and Hessian sparsity

patterns, through a collection of calculate() methods.

The get() and set() methods are similar in concept to what might be found in a library for

interfacing to any XML format. The calculate() methods are specific to optimization, however;
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they are designed for nonlinear solvers that require function and derivative computations to be

carried out externally. Currently these methods are implemented by linking to CppAD (www.

coin-or.org/CppAD/Doc/cppad.xml), an open-source package for algorithmic differentiation that

is hosted by COIN-OR.

We have similarly designed OSResult and OSOptions classes to parallel the OSrL and OSoL

schemas, and have written analogous get() and set() methods. The availability of our C++

libraries is discussed further in Section 5.

3.6 Representation Protocols for Registry Servers

When an optimization service registers with a registry service it must provide detailed information

about the problems it can solve. For example, is it only a linear programming solver, or does it

allow integer variables? If it is a nonlinear solver, does it seek a globally optimal solution, or does it

search for only locally optimal points? In the OS framework, the information that the optimization

service must provide to the registry service is specified using the OSeL (Optimization Services

entity Language) protocol. Like the other protocols we have introduced, OSeL is specified by a

schema. A key element of OSeL is <optimizationType>, which contains numerous children such as

<contraintType> and <variableType> that spell out the optimization problems that the solver

can handle.

If a client is to communicate with a suitable optimization server in peer-to-peer fashion, it must

have the address (URL) of the server. In order to determine which servers support the appropriate

solver type, the client will query the OS registry server. To query the database on the registry

server, clients use the Optimization Services query Language (OSqL). The OSqL schema specifies,

for example, an <optimizationType> element matching that of the OSeL schema. This allows for

the symmetric registration and querying of optimization problem types.

It is important to observe that the OS Framework does not specify how the registry service

should parse the OSqL query and use the information to query the registry database. If the registry

database is in XML format, one possibility is to parse the OSqL file to build a query in XQuery,
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which is then executed against the registry database. XQuery is a standard specified by the W3C

for querying XML databases; it is to an XML database what SQL is to a relational database. It is

attractive for its consistency with the XML orientation of the OS Framework. The registry service

could also be implemented using a standard kind of relational database, however.

How the OSqL query is communicated to the OS registry is specified in the Optimization Services

discover Language (OSdL), a WSDL document; this protocol is discussed in Section 4.2. Clients

get location information about optimization service solvers from the registry as a sequence of URIs

(or URLs), whose syntax is specified in the Optimization Services uri Language (OSuL).

4. Optimization Services Communication

We have described OS protocols for representing model instances, optimization results, and solver

options. In a distributed computing environment these representations must be communicated

between the service consumers and service providers. Sections 4.1 and 4.2 describe the OS protocols

for communicating with solver servers and registry servers, respectively.

4.1 Communication Protocols for Solver Servers

For effective communication between a consumer and a provider under the SOA paradigm (Figure

4), service consumers must tell service providers exactly “what to do.” Similarly, service providers

must tell service consumers what “they can do.”

In a Web Services implementation of a service oriented architecture, a service provider commu-

nicates to consumers its capabilities — the set of functions or methods that it can perform — using

WSDL (Web Services Description Language). A WSDL document is written in XML and provides

a listing of these methods along with their inputs (arguments) and outputs. In the OS project

the WSDL communication protocol for this purpose is OShL (Optimization Services hookup Lan-

guage), that describes the methods to be used in communication between solvers and clients. For

example, when communicating with the provider of an optimization service, a natural method is

solve(). Thus the service consumer will request a solve() service from the solver service provider.
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Figure 11 shows the WSDL that defines the solve() method. The method takes a solveRequest

and responds with a solveResponse.

<operation name="solve" parameterOrder="osil osol">
<input name="solveRequest" message="os:solveRequest"/>
<output name="solveResponse" message="os:solveResponse"/>

</operation>

Figure 11 WSDL defining the solve() method in the OShL protocol.

Figure 12 shows the WSDL that provides the details of the solveRequest and of the

solveResponse. A solveRequest requires two string arguments: the first argument osil is the

model instance in OSiL format and the second argument osol is the solver options in OSoL format.

The solveResponse is osrl which is the solution in an OSrL string.

<message name="solveRequest">
<part name="osil" type="xsd:string"/>
<part name="osol" type="xsd:string"/>

</message>
<message name="solveResponse">

<part name="osrl" type="xsd:string"/>
</message>

Figure 12 Details of Figure 11’s solveRequest and solveResponse.

Figure 13 shows the inputs and outputs of the six methods that constitute OShL. The purposes

of these methods are as follows:

� solve() performs synchronous communication with the server. It submits a model

instance and waits for the solution.

� send() performs asynchronous communication with the server. This method requires a

<jobID> element in the osol string. It returns true if the problem was successfully submitted,

false otherwise; it can be used with knock() to see if a job is ready and with retrieve() to

get the results back.

� getJobID() is used to maintain session and state on a distributed system. The JobID

returned can be used as input in the osol string for send().
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� knock() requests process and job status information from the remote server in OSpL

(Optimization Services process Language) format. This method can be used to see if a job is

complete, and if so, retrieve() can be used to get the result.

� retrieve() gets results from a solver. Like send(), this method requires a <jobID>

element in the osol string..

� kill() terminates a job on the server. This method can be used to abort long-running jobs

or jobs for which there was input error. It is particularly important to an SOA for optimization

on account of the pronounced unpredictability of solver performance.

Refer to this paper’s online supplement, Fourer, Ma, and Martin (2008), for a detailed example

illustrating the OShL protocols.

Figure 13 The OS hookup Language (OShL) communication methods.

As we discussed in Section 2.3 and illustrated in Figure 6, service providers and service consumers

communicate with each other through SOAP. If, for example, a service consumer wished to retrieve

the result of an optimization, the consumer could send a SOAP envelope in the body of an HTTP

message to the solver server. The SOAP envelope would contain a <retrieve> element. The

retrieve() method has a single argument, osol. Thus <retrieve> has a child element, <osol>.

The <osol> element then contains the actual solver options in XML format conforming to the
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OSoL schema. Therefore we have a string in the OSoL protocol packed inside an element in the

OShL protocol in a SOAP envelope in an HTTP body.

An additional benefit of using WSDL is that when one implements an OS Web service on the

server side, one can use OShL as a reference and take advantage of software tools that automatically

generate much of the required client-side code.

4.2 Communication Protocols for Registry Servers

In the OS framework, clients must be able to discover the locations of optimization solvers in order

to initiate direct peer-to-peer communication with them. Optimization solvers must be able to

register their services. The Optimization Services discover Language (OSdL) specifies a protocol

for communicating with the registry server in order to both register and discover optimization

services. Like OShL, OSdL is specified using WSDL. The two key methods described by OSdL are

find() and register(), whose inputs and outputs are shown in Figure 14:

� find() is used to discover an optimization service. Its arguments are an OSqL string that

contains the query commands for finding an appropriate optimization solver (for example, one

that can solve nonlinear optimization problems), and an OSoL string that specifies options to

the query (for example, a limit on the number of results returned). The method returns an

OSuL string that contains the URLs for solvers capable of handling the specified problems.

� register() is used by the optimization service to register itself with the registry service.

The information about the optimization service is passed to the registry service using the

entity (OSeL) protocol.

OSqL, OSuL, and OSeL are all representation protocols that were described in Section 3.6.

5. The COIN-OR Open Source OS Project

In order to provide a reference implementation and test the OS framework, we have implemented

many of the protocols described in this paper in C++ and Java libraries. This code is the basis of

an open-source project within COIN-OR (COmputational INfrastructure for Operations Research,

projects.coin-or.org/OS). The COIN-OR OS project provides the following:
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Figure 14 The OS discovery Language (OSdL) communication methods.

� A library of classes for reading and writing files in the OSiL, OSrL, and OSoL formats.

� A library that can be used to create Web Services SOAP packages containing OSiL

instances and to contact a server for solution.

� A robust solver and modeling language interface for linear and nonlinear optimization

problems, including the get(), set(), and calculate() methods described in Section 3.5.

� A command-line executable, OSSolverService, for reading problem instances — in OSiL

format, AMPL nl format, or MPS format — and calling a solver either locally or on a remote

server. The OSSolverService implements the six OShL methods described in Section 4.1.

� Server software that works with Apache Tomcat and Apache Axis to provide a Web

Services implementation, OSSolverService.jws, that acts as middleware between the remote

client that submits the instance and the server on which a solver optimizes the instance and

returns the result. This software implements the six OShL methods on the server end.

� A program OSAmplClient that appears as a “solver” to the AMPL modeling environment

and, based on options given in AMPL, contacts OS solvers either remotely or locally to solve

instances created in the AMPL modeling language. The optimization result in OSrL format

is then translated back into a format understandable by AMPL for displaying results.
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� Utilities that convert MPS format (www.mcs.anl.gov/OTC/Guide/OptWeb/continuous/

constrained/linearprog/mps.html) and AMPL nl format (www.ampl.com/hooking.html)

into the OSiL XML format.

� A lightweight version of the project, OSCommon, for modeling language and solver develop-

ers who want to use the OS API, readers, and writers without the overhead of other COIN-OR

projects or any third-party software.

This paper’s online supplement shows how the COIN-OR software is used to call a remote server.

It includes a detailed illustration of using the OSSolverService in conjunction with the OShL

methods.

6. Extensions and Impact

We have completed a framework for applying optimization as a software service. Ongoing research

is directed into two areas.

First, we are working to extend the libraries to new classes of optimization problems, including

extensions for semidefinite and cone programming, robust optimization, disjunctive programming,

constraint programming, and stochastic programming (see Fourer et al. (2007)).

Second, we are working to gain acceptance of the OS standards. We hope to use the COIN-OR

project as springboard to get both solver developers and modeling language developers to adopt

the OS framework.

The COIN-OR OS libraries currently support the commercial solvers CPLEX and LINDO, in

addition to the open-source COIN-OR solvers Bonmin, Cbc, Clp, Couenne, DyLP, Ipopt, SYM-

PHONY, and Vol. The GNU GLPK solver is also supported by the OS libraries. The MOSEK

ApS optimization solver and the Frontline Systems Solver Platform SDK currently support OSiL

for problem instance representation of mixed integer linear programs.

Support is also being developed for modeling languages. The COIN-OR project includes an

executable OSAmplClient that can be called from inside the AMPL modeling language (Fourer

et al. (2003), www.ampl.com), much as Kestrel (Dolan et al. (2008)) allows NEOS solvers to be
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invoked from within AMPL. A similar feature is available for the GAMS modeling language (Brooke

et al. (1988), www.gams.com) through the COIN-OR project GAMSlinks (projects.coin-or.org/

GAMSlinks). We illustrate the use of OS with AMPL and GAMS in the Online Supplement to this

paper. We also plan to develop similar features for the LINGO modeling language (www.lindo.

com).

LogicBlox (www.logicblox.com), a developer of online predictive and optimization software,

is currently developing a product based on Optimization Services. This product allows users to

develop optimization models through a Web-based graphical user interface. A model instance is

converted to OSiL and then sent to a solver on a local or remote machine; the underlying result is

returned as OSrL where it is then converted into a more user-friendly solution report. A browser

is the only required software on the client. This is a true example of optimization as a service.
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