|
Prev
| Next
|
|
|
|
|
|
unary_plus.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
AD Unary Plus Operator: Example and Test
# include <cppad/cppad.hpp>
bool UnaryPlus(void)
{ bool ok = true;
using CppAD::AD;
// domain space vector
size_t n = 1;
CPPAD_TESTVECTOR(AD<double>) x(n);
x[0] = 3.;
// declare independent variables and start tape recording
CppAD::Independent(x);
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) y(m);
y[0] = + x[0];
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(x, y);
// check values
ok &= ( y[0] == 3. );
// forward computation of partials w.r.t. x[0]
CPPAD_TESTVECTOR(double) dx(n);
CPPAD_TESTVECTOR(double) dy(m);
size_t p = 1;
dx[0] = 1.;
dy = f.Forward(p, dx);
ok &= ( dy[0] == 1. ); // dy[0] / dx[0]
// reverse computation of dertivative of y[0]
CPPAD_TESTVECTOR(double) w(m);
CPPAD_TESTVECTOR(double) dw(n);
w[0] = 1.;
dw = f.Reverse(p, w);
ok &= ( dw[0] == 1. ); // dy[0] / dx[0]
// use a VecAD<Base>::reference object with unary plus
CppAD::VecAD<double> v(1);
AD<double> zero(0);
v[zero] = x[0];
AD<double> result = + v[zero];
ok &= (result == y[0]);
return ok;
}
Input File: example/general/unary_plus.cpp