Prev Next subgraph_reverse.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
Computing Reverse Mode on Subgraphs: Example and Test
# include <cppad/cppad.hpp>
bool subgraph_reverse(void)
{   bool ok = true;
    //
    using CppAD::AD;
    using CppAD::NearEqual;
    using CppAD::sparse_rc;
    using CppAD::sparse_rcv;
    //
    typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
    typedef CPPAD_TESTVECTOR(double)     d_vector;
    typedef CPPAD_TESTVECTOR(bool)       b_vector;
    typedef CPPAD_TESTVECTOR(size_t)     s_vector;
    //
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
    //
    // domain space vector
    size_t n = 4;
    a_vector  a_x(n);
    for(size_t j = 0; j < n; j++)
        a_x[j] = AD<double> (0);
    //
    // declare independent variables and starting recording
    CppAD::Independent(a_x);
    //
    size_t m = 3;
    a_vector  a_y(m);
    a_y[0] = a_x[0] + a_x[1];
    a_y[1] = a_x[2] + a_x[3];
    a_y[2] = a_x[0] + a_x[1] + a_x[2] + a_x[3] * a_x[3] / 2.;
    //
    // create f: x -> y and stop tape recording
    CppAD::ADFun<double> f(a_x, a_y);
    ok &= f.size_random() == 0;
    //
    // new value for the independent variable vector
    d_vector x(n);
    for(size_t j = 0; j < n; j++)
        x[j] = double(j);
    f.Forward(0, x);
    /*
           [ 1 1 0 0  ]
    J(x) = [ 0 0 1 1  ]
           [ 1 1 1 x_3]
    */
    double J[] = {
        1.0, 1.0, 0.0, 0.0,
        0.0, 0.0, 1.0, 1.0,
        1.0, 1.0, 1.0, 0.0
    };
    J[11] = x[3];
    //
    // exclude x[0] from the calculations
    b_vector select_domain(n);
    select_domain[0] = false;
    for(size_t j = 1; j < n; j++)
        select_domain[j] = true;
    //
    // initilaize for reverse mode derivatives computation on subgraphs
    f.subgraph_reverse(select_domain);
    //
    // compute the derivative for each range component
    for(size_t i = 0; i < m; i++)
    {   d_vector dw;
        s_vector col;
        size_t   q = 1; // derivative of one Taylor coefficient (zero order)
        f.subgraph_reverse(q, i, col, dw);
        //
        // check order in col
        for(size_t c = 1; c < size_t( col.size() ); c++)
            ok &= col[c] > col[c-1];
        //
        // check that x[0] has been excluded by select_domain
        if( size_t( col.size() ) > 0 )
            ok &= col[0] != 0;
        //
        // check derivatives for i-th row of J(x)
        // note that dw is only specified for j in col
        size_t c = 0;
        for(size_t j = 1; j < n; j++)
        {   while( c < size_t( col.size() ) && col[c] < j )
                ++c;
            if( c < size_t( col.size() ) && col[c] == j )
                ok &= NearEqual(dw[j], J[i * n + j], eps99, eps99);
            else
                ok &= NearEqual(0.0, J[i * n + j], eps99, eps99);
        }
    }
    ok &= f.size_random() > 0;
    f.clear_subgraph();
    ok &= f.size_random() == 0;
    return ok;
}

Input File: example/sparse/subgraph_reverse.cpp