|
Prev
| Next
|
|
|
|
|
|
sparse_jac_rev.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Computing Sparse Jacobian Using Reverse Mode: Example and Test
# include <cppad/cppad.hpp>
bool sparse_jac_rev(void)
{ bool ok = true;
//
using CppAD::AD;
using CppAD::NearEqual;
using CppAD::sparse_rc;
using CppAD::sparse_rcv;
//
typedef CPPAD_TESTVECTOR(AD<double>) a_vector;
typedef CPPAD_TESTVECTOR(double) d_vector;
typedef CPPAD_TESTVECTOR(size_t) s_vector;
//
// domain space vector
size_t n = 4;
a_vector a_x(n);
for(size_t j = 0; j < n; j++)
a_x[j] = AD<double> (0);
//
// declare independent variables and starting recording
CppAD::Independent(a_x);
//
size_t m = 3;
a_vector a_y(m);
a_y[0] = a_x[0] + a_x[1];
a_y[1] = a_x[2] + a_x[3];
a_y[2] = a_x[0] + a_x[1] + a_x[2] + a_x[3] * a_x[3] / 2.;
//
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(a_x, a_y);
//
// new value for the independent variable vector
d_vector x(n);
for(size_t j = 0; j < n; j++)
x[j] = double(j);
/*
[ 1 1 0 0 ]
J(x) = [ 0 0 1 1 ]
[ 1 1 1 x_3]
*/
//
// row-major order values of J(x)
size_t nnz = 8;
s_vector check_row(nnz), check_col(nnz);
d_vector check_val(nnz);
for(size_t k = 0; k < nnz; k++)
{ // check_val
if( k < 7 )
check_val[k] = 1.0;
else
check_val[k] = x[3];
//
// check_row and check_col
check_col[k] = k;
if( k < 2 )
check_row[k] = 0;
else if( k < 4 )
check_row[k] = 1;
else
{ check_row[k] = 2;
check_col[k] = k - 4;
}
}
//
// m by m identity matrix sparsity
sparse_rc<s_vector> pattern_in(m, m, m);
for(size_t k = 0; k < m; k++)
pattern_in.set(k, k, k);
//
// sparsity for J(x)
bool transpose = false;
bool dependency = false;
bool internal_bool = true;
sparse_rc<s_vector> pattern_jac;
f.rev_jac_sparsity(
pattern_in, transpose, dependency, internal_bool, pattern_jac
);
//
// compute entire reverse mode Jacobian
sparse_rcv<s_vector, d_vector> subset( pattern_jac );
CppAD::sparse_jac_work work;
std::string coloring = "cppad";
size_t n_sweep = f.sparse_jac_rev(x, subset, pattern_jac, coloring, work);
ok &= n_sweep == 2;
//
const s_vector row( subset.row() );
const s_vector col( subset.col() );
const d_vector val( subset.val() );
s_vector row_major = subset.row_major();
ok &= subset.nnz() == nnz;
for(size_t k = 0; k < nnz; k++)
{ ok &= row[ row_major[k] ] == check_row[k];
ok &= col[ row_major[k] ] == check_col[k];
ok &= val[ row_major[k] ] == check_val[k];
}
//
// test using work stored by previous sparse_jac_rev
sparse_rc<s_vector> pattern_not_used;
std::string coloring_not_used;
n_sweep = f.sparse_jac_rev(x, subset, pattern_jac, coloring, work);
ok &= n_sweep == 2;
for(size_t k = 0; k < nnz; k++)
{ ok &= row[ row_major[k] ] == check_row[k];
ok &= col[ row_major[k] ] == check_col[k];
ok &= val[ row_major[k] ] == check_val[k];
}
//
// compute non-zero in col 3 only, nr = m, nc = n, nnz = 2
sparse_rc<s_vector> pattern_col3(m, n, 2);
pattern_col3.set(0, 1, 3); // row[0] = 1, col[0] = 3
pattern_col3.set(1, 2, 3); // row[1] = 2, col[1] = 3
sparse_rcv<s_vector, d_vector> subset_col3( pattern_col3 );
work.clear();
n_sweep = f.sparse_jac_rev(x, subset_col3, pattern_jac, coloring, work);
ok &= n_sweep == 2;
//
const s_vector row_col3( subset_col3.row() );
const s_vector col_col3( subset_col3.col() );
const d_vector val_col3( subset_col3.val() );
ok &= subset_col3.nnz() == 2;
//
ok &= row_col3[0] == 1;
ok &= col_col3[0] == 3;
ok &= val_col3[0] == 1.0;
//
ok &= row_col3[1] == 2;
ok &= col_col3[1] == 3;
ok &= val_col3[1] == x[3];
//
return ok;
}
Input File: example/sparse/sparse_jac_rev.cpp