|
Prev
| Next
|
|
|
|
|
|
sparse_jac_fun.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
sparse_jac_fun: Example and test
# include <cppad/speed/sparse_jac_fun.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/cppad.hpp>
bool sparse_jac_fun(void)
{ using CppAD::NearEqual;
using CppAD::AD;
bool ok = true;
size_t j, k;
double eps = CppAD::numeric_limits<double>::epsilon();
size_t n = 3;
size_t m = 4;
size_t K = 5;
CppAD::vector<size_t> row(K), col(K);
CppAD::vector<double> x(n), yp(K);
CppAD::vector< AD<double> > a_x(n), a_y(m);
// choose x
for(j = 0; j < n; j++)
a_x[j] = x[j] = double(j + 1);
// choose row, col
for(k = 0; k < K; k++)
{ row[k] = k % m;
col[k] = (K - k) % n;
}
// declare independent variables
Independent(a_x);
// evaluate function
size_t order = 0;
CppAD::sparse_jac_fun< AD<double> >(m, n, a_x, row, col, order, a_y);
// evaluate derivative
order = 1;
CppAD::sparse_jac_fun<double>(m, n, x, row, col, order, yp);
// use AD to evaluate derivative
CppAD::ADFun<double> f(a_x, a_y);
CppAD::vector<double> jac(m * n);
jac = f.Jacobian(x);
for(k = 0; k < K; k++)
{ size_t index = row[k] * n + col[k];
ok &= NearEqual(jac[index], yp[k] , eps, eps);
}
return ok;
}
Input File: speed/example/sparse_jac_fun.cpp