|
Prev
| Next
|
|
|
|
|
|
sacado_det_minor.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Sacado Speed: Gradient of Determinant by Minor Expansion
Specifications
See link_det_minor
.
Implementation
// suppress conversion warnings before other includes
# include <cppad/wno_conversion.hpp>
//
# include <Sacado.hpp>
# include <cppad/speed/det_by_minor.hpp>
# include <cppad/speed/uniform_01.hpp>
# include <cppad/utility/vector.hpp>
// list of possible options
# include <map>
extern std::map<std::string, bool> global_option;
bool link_det_minor(
const std::string& job ,
size_t size ,
size_t repeat ,
CppAD::vector<double> &matrix ,
CppAD::vector<double> &gradient )
{
// --------------------------------------------------------------------
// check none of the global options is true
typedef std::map<std::string, bool>::iterator iterator;
for(iterator itr=global_option.begin(); itr!=global_option.end(); ++itr)
{ if( itr->second )
return false;
}
// -----------------------------------------------------
// not using job
// -----------------------------------------------------
// AD types
typedef Sacado::Rad::ADvar<double> r_double;
typedef CppAD::vector<r_double> r_vector;
// object for computing deterinant
CppAD::det_by_minor<r_double> r_det(size);
// number of independent variables
size_t n = size * size;
// independent variable vector
r_vector r_A(n);
// AD value of the determinant
r_double r_detA;
// ------------------------------------------------------
while(repeat--)
{ // get the next matrix
CppAD::uniform_01(n, matrix);
// set independent variable values
for(size_t j = 0; j < n; ++j)
r_A[j] = matrix[j];
// compute the determinant
r_detA = r_det(r_A);
// reverse mode compute gradient of last computed value; i.e., detA
r_double::Gradcomp();
// return gradient
for(size_t j =0; j < n; ++j)
gradient[j] = r_A[j].adj(); // partial detA w.r.t A[j]
}
// ---------------------------------------------------------
return true;
}
Input File: speed/sacado/det_minor.cpp