@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
rosen_34: Example and Test
Define
@(@
X : \B{R} \rightarrow \B{R}^n
@)@ by
@[@
X_i (t) = t^{i+1}
@]@
for @(@
i = 1 , \ldots , n-1
@)@.
It follows that
@[@
\begin{array}{rclr}
X_i(0) & = & 0 & {\rm for \; all \;} i \\
X_i ' (t) & = & 1 & {\rm if \;} i = 0 \\
X_i '(t) & = & (i+1) t^i = (i+1) X_{i-1} (t) & {\rm if \;} i > 0
\end{array}
@]@
The example tests Rosen34 using the relations above:
Operation Sequence
The rosen34
method for solving ODE's requires the inversion
of a system of linear equations.
This indices used for pivoting may change with different values
for @(@
t
@)@ and @(@
x
@)@.
This example checks the comparison operators.
If some of the comparisons change,
it makes a new recording of the function with the pivots for the current
@(@
t
@)@ and @(@
x
@)@.
Note that one could skip this step and always use the same pivot.
This would not be as numerically stable,
but it would still solve the equations
(so long as none of the pivot elements are zero).
# include <cppad/cppad.hpp> // For automatic differentiationnamespace {
class Fun {
private:
const bool use_x_;
CppAD::ADFun<double> ode_ind_;
CppAD::ADFun<double> ode_dep_;
public:
// constructorFun(bool use_x) : use_x_(use_x)
{ }
// compute f(t, x) both for double and AD<double>template <class Scalar>
void Ode(
const Scalar &t,
constCPPAD_TESTVECTOR(Scalar) &x,
CPPAD_TESTVECTOR(Scalar) &f)
{ size_t n = x.size();
Scalar ti(1);
f[0] = Scalar(1);
for(size_t i = 1; i < n; i++)
{ ti *= t;
if( use_x_ )
f[i] = Scalar(i+1) * x[i-1];
else
f[i] = Scalar(i+1) * ti;
}
}
// compute partial of f(t, x) w.r.t. t using AD
void Ode_ind(
const double &t,
constCPPAD_TESTVECTOR(double) &x,
CPPAD_TESTVECTOR(double) &f_t)
{ usingnamespace CppAD;
size_t n = x.size();
bool ode_ind_defined = ode_ind_.size_var() != 0;
//CPPAD_TESTVECTOR(double) t_vec(1);
t_vec[0] = t;
//
bool retape = true;
if( ode_ind_defined )
{ // check if any comparison operators have a different result
ode_ind_.new_dynamic(x);
ode_ind_.Forward(0, t_vec);
retape = ode_ind_.compare_change_number() > 0;
}
if( retape )
{ // record function that evaluates f(t, x)// with t as independent variable and x as dynamcic parameterCPPAD_TESTVECTOR(AD<double>) at(1);
CPPAD_TESTVECTOR(AD<double>) ax(n);
CPPAD_TESTVECTOR(AD<double>) af(n);
// set argument values
at[0] = t;
size_t i;
for(i = 0; i < n; i++)
ax[i] = x[i];
// declare independent variables and dynamic parameters
size_t abort_op_index = 0;
bool record_compare = false;
Independent(at, abort_op_index, record_compare, ax);
// compute f(t, x)this->Ode(at[0], ax, af);
// define AD function object
ode_ind_.Dependent(at, af);
// store result in ode_ind_ so can be re-usedassert( ode_ind_.size_var() != 0 );
}
// special case where new_dynamic not yet setif( ! ode_ind_defined )
ode_ind_.new_dynamic(x);
// compute partial of f w.r.t t
f_t = ode_ind_.Jacobian(t_vec); // partial f(t, x) w.r.t. t
}
// compute partial of f(t, x) w.r.t. x using AD
void Ode_dep(
const double &t,
constCPPAD_TESTVECTOR(double) &x,
CPPAD_TESTVECTOR(double) &f_x)
{ usingnamespace CppAD;
size_t n = x.size();
bool ode_dep_defined = ode_dep_.size_var() != 0;
//CPPAD_TESTVECTOR(double) t_vec(1), dx(n), df(n);
t_vec[0] = t;
//
bool retape = true;
if( ode_dep_defined )
{ // check if any comparison operators have a differrent result
ode_dep_.new_dynamic(t_vec);
ode_dep_.Forward(0, x);
retape = ode_dep_.compare_change_number() > 0;
}
if( retape )
{ // record function that evaluates f(t, x)// with x as independent variable and t as dynamcic parameterCPPAD_TESTVECTOR(AD<double>) at(1);
CPPAD_TESTVECTOR(AD<double>) ax(n);
CPPAD_TESTVECTOR(AD<double>) af(n);
// set argument values
at[0] = t;
for(size_t i = 0; i < n; i++)
ax[i] = x[i];
// declare independent variables
size_t abort_op_index = 0;
bool record_compare = false;
Independent(ax, abort_op_index, record_compare, at);
// compute f(t, x)this->Ode(at[0], ax, af);
// define AD function object
ode_dep_.Dependent(ax, af);
// store result in ode_dep_ so can be re-usedassert( ode_ind_.size_var() != 0 );
}
// special case where new_dynamic not yet setif( ! ode_dep_defined )
ode_dep_.new_dynamic(t_vec);
// compute partial of f w.r.t x
f_x = ode_dep_.Jacobian(x); // partial f(t, x) w.r.t. x
}
};
}
bool rosen_34(void)
{ bool ok = true; // initial return valueusing CppAD::NearEqual;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
size_t n = 4; // number components in X(t) and order of method
size_t M = 2; // number of Rosen34 steps in [ti, tf]
double ti = 0.; // initial time
double tf = 2.; // final time// xi = X(0)CPPAD_TESTVECTOR(double) xi(n);
for(size_t i = 0; i <n; i++)
xi[i] = 0.;
for(size_t use_x = 0; use_x < 2; use_x++)
{ // function object depends on value of use_x
Fun F(use_x > 0);
// compute Rosen34 approximation for X(tf)CPPAD_TESTVECTOR(double) xf(n), e(n);
xf = CppAD::Rosen34(F, M, ti, tf, xi, e);
double check = tf;
for(size_t i = 0; i < n; i++)
{ // check that error is always positive
ok &= (e[i] >= 0.);
// 4th order method is exact for i < 4if( i < 4 ) ok &=
NearEqual(xf[i], check, eps99, eps99);
// 3rd order method is exact for i < 3if( i < 3 )
ok &= (e[i] <= eps99);
// check value for next i
check *= tf;
}
}
return ok;
}