|
Prev
| Next
|
|
|
|
|
|
qp_box.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
abs_normal qp_box: Example and Test
Problem
Our original problem is
@[@
\begin{array}{rl}
\R{minimize} & x_0 - x_1 \; \R{w.r.t} \; x \in \B{R}^2 \\
\R{subject \; to} & -2 \leq x_0 \leq +2 \; \R{and} \; -2 \leq x_1 \leq +2
\end{array}
@]@
Source
# include <limits>
# include <cppad/utility/vector.hpp>
# include "qp_box.hpp"
bool qp_box(void)
{ bool ok = true;
typedef CppAD::vector<double> vector;
//
size_t n = 2;
size_t m = 0;
vector a(n), b(n), c(m), C(m), g(n), G(n*n), xin(n), xout(n);
a[0] = -2.0;
a[1] = -2.0;
b[0] = +2.0;
b[1] = +2.0;
g[0] = +1.0;
g[1] = -1.0;
for(size_t i = 0; i < n * n; i++)
G[i] = 0.0;
//
// (0, 0) is feasible.
xin[0] = 0.0;
xin[1] = 0.0;
//
size_t level = 0;
double epsilon = 99.0 * std::numeric_limits<double>::epsilon();
size_t maxitr = 20;
//
ok &= CppAD::qp_box(
level, a, b, c, C, g, G, epsilon, maxitr, xin, xout
);
//
// check optimal value for x
ok &= std::fabs( xout[0] + 2.0 ) < epsilon;
ok &= std::fabs( xout[1] - 2.0 ) < epsilon;
//
return ok;
}
Input File: example/abs_normal/qp_box.cpp