# include <cppad/cppad.hpp>
namespace {
struct tape_size { size_t n_var; size_t n_op; };
template <class Vector> void fun(
const std::string& options ,
const Vector& x, Vector& y, tape_size& before, tape_size& after
)
{ typedeftypename Vector::value_type scalar;
// phantom variable with index 0 and independent variables// begin operator, independent variable operators and end operator
before.n_var = 1 + x.size(); before.n_op = 2 + x.size();
after.n_var = 1 + x.size(); after.n_op = 2 + x.size();
// Create a variable that is is only used as left operand// in the comparison operation
scalar left = 1. / x[0];
before.n_var += 1; before.n_op += 1;
after.n_var += 1; after.n_op += 1;
// right operand in comparison operation
scalar right = x[0];
before.n_var += 0; before.n_op += 0;
after.n_var += 0; after.n_op += 0;
// Note that the left and right operand in the CondExpLt comparison// are determined at this point. Hence the conditional skip operator// will be inserted here so that the operations mentioned below can// also be skipped during zero order foward mode.if( options.find("no_conditional_skip") == std::string::npos )
after.n_op += 1; // for conditional skip operation// Create a variable that is only used when comparison result is true// (can be skipped when the comparison result is false)
scalar if_true = x[0] * 5.0;
before.n_var += 1; before.n_op += 1;
after.n_var += 1; after.n_op += 1;
// Create two variables only used when the comparison result is false// (can be skipped when the comparison result is true)
scalar temp = 5.0 + x[0];
scalar if_false = temp * 3.0;
before.n_var += 2; before.n_op += 2;
after.n_var += 2; after.n_op += 2;
// conditional comparison is 1 / x[0] < x[0]
scalar value = CppAD::CondExpLt(left, right, if_true, if_false);
before.n_var += 1; before.n_op += 1;
after.n_var += 1; after.n_op += 1;
// results for this operation sequence
y[0] = value;
before.n_var += 0; before.n_op += 0;
after.n_var += 0; after.n_op += 0;
}
}
bool conditional_skip(void)
{ bool ok = true;
using CppAD::AD;
using CppAD::NearEqual;
double eps10 = 10.0 * std::numeric_limits<double>::epsilon();
// domain space vector
size_t n = 1;
CPPAD_TESTVECTOR(AD<double>) ax(n);
ax[0] = 0.5;
// range space vector
size_t m = 1;
CPPAD_TESTVECTOR(AD<double>) ay(m);
for(size_t k = 0; k < 2; k++)
{ // optimization options
std::string options = "";
if( k == 0 )
options = "no_conditional_skip";
// declare independent variables and start tape recording
CppAD::Independent(ax);
// compute function computation
tape_size before, after;
fun(options, ax, ay, before, after);
// create f: x -> y and stop tape recording
CppAD::ADFun<double> f(ax, ay);
ok &= f.size_order() == 1; // this constructor does 0 order forward
ok &= f.size_var() == before.n_var;
ok &= f.size_op() == before.n_op;
// Optimize the operation sequence
f.optimize(options);
ok &= f.size_order() == 0; // 0 order forward not present
ok &= f.size_var() == after.n_var;
ok &= f.size_op() == after.n_op;
// Check case where result of the comparison is true (x[0] > 1.0).CPPAD_TESTVECTOR(double) x(n), y(m), check(m);
x[0] = 1.75;
y = f.Forward(0, x);
fun(options, x, check, before, after);
ok &= NearEqual(y[0], check[0], eps10, eps10);
if( options == "" )
ok &= f.number_skip() == 2;
else
ok &= f.number_skip() == 0;
// Check case where result of the comparison is false (x[0] <= 1.0)
x[0] = 0.5;
y = f.Forward(0, x);
fun(options, x, check, before, after);
ok &= NearEqual(y[0], check[0], eps10, eps10);
if( options == "" )
ok &= f.number_skip() == 1;
else
ok &= f.number_skip() == 0;
}
return ok;
}