Prev Next ode_gear.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
OdeGear: Example and Test
Define @(@ x : \B{R} \rightarrow \B{R}^n @)@ by @[@ x_i (t) = t^{i+1} @]@ for @(@ i = 1 , \ldots , n-1 @)@. It follows that @[@ \begin{array}{rclr} x_i(0) & = & 0 & {\rm for \; all \;} i \\ x_i ' (t) & = & 1 & {\rm if \;} i = 0 \\ x_i '(t) & = & (i+1) t^i = (i+1) x_{i-1} (t) & {\rm if \;} i > 0 \end{array} @]@ The example tests OdeGear using the relations above:

# include <cppad/utility/ode_gear.hpp>
# include <cppad/cppad.hpp>        // For automatic differentiation

namespace {
    class Fun {
    public:
        // constructor
        Fun(bool use_x_) : use_x(use_x_)
        { }

        // compute f(t, x) both for double and AD<double>
        template <class Scalar>
        void Ode(
            const Scalar                    &t,
            const CPPAD_TESTVECTOR(Scalar) &x,
            CPPAD_TESTVECTOR(Scalar)       &f)
        {   size_t n  = x.size();
            Scalar ti(1);
            f[0]   = Scalar(1);
            size_t i;
            for(i = 1; i < n; i++)
            {   ti *= t;
                // convert int(size_t) to avoid warning
                // on _MSC_VER systems
                if( use_x )
                    f[i] = int(i+1) * x[i-1];
                else
                    f[i] = int(i+1) * ti;
            }
        }

        void Ode_dep(
            const double                    &t,
            const CPPAD_TESTVECTOR(double) &x,
            CPPAD_TESTVECTOR(double)       &f_x)
        {   using namespace CppAD;

            size_t n  = x.size();
            CPPAD_TESTVECTOR(AD<double>) T(1);
            CPPAD_TESTVECTOR(AD<double>) X(n);
            CPPAD_TESTVECTOR(AD<double>) F(n);

            // set argument values
            T[0] = t;
            size_t i, j;
            for(i = 0; i < n; i++)
                X[i] = x[i];

            // declare independent variables
            Independent(X);

            // compute f(t, x)
            this->Ode(T[0], X, F);

            // define AD function object
            ADFun<double> fun(X, F);

            // compute partial of f w.r.t x
            CPPAD_TESTVECTOR(double) dx(n);
            CPPAD_TESTVECTOR(double) df(n);
            for(j = 0; j < n; j++)
                dx[j] = 0.;
            for(j = 0; j < n; j++)
            {   dx[j] = 1.;
                df = fun.Forward(1, dx);
                for(i = 0; i < n; i++)
                    f_x [i * n + j] = df[i];
                dx[j] = 0.;
            }
        }

    private:
        const bool use_x;

    };
}

bool OdeGear(void)
{   bool ok = true; // initial return value
    size_t i, j;    // temporary indices
    double eps99 = 99.0 * std::numeric_limits<double>::epsilon();

    size_t  m = 4;  // index of next value in X
    size_t  n = m;  // number of components in x(t)

    // vector of times
    CPPAD_TESTVECTOR(double) T(m+1);
    double step = .1;
    T[0]        = 0.;
    for(j = 1; j <= m; j++)
    {   T[j] = T[j-1] + step;
        step = 2. * step;
    }

    // initial values for x( T[m-j] )
    CPPAD_TESTVECTOR(double) X((m+1) * n);
    for(j = 0; j < m; j++)
    {   double ti = T[j];
        for(i = 0; i < n; i++)
        {   X[ j * n + i ] = ti;
            ti *= T[j];
        }
    }

    // error bound
    CPPAD_TESTVECTOR(double) e(n);

    size_t use_x;
    for( use_x = 0; use_x < 2; use_x++)
    {   // function object depends on value of use_x
        Fun F(use_x > 0);

        // compute OdeGear approximation for x( T[m] )
        CppAD::OdeGear(F, m, n, T, X, e);

        double check = T[m];
        for(i = 0; i < n; i++)
        {   // method is exact up to order m and x[i] = t^{i+1}
            if( i + 1 <= m ) ok &= CppAD::NearEqual(
                X[m * n + i], check, eps99, eps99
            );
            // error bound should be zero up to order m-1
            if( i + 1 < m ) ok &= CppAD::NearEqual(
                e[i], 0., eps99, eps99
            );
            // check value for next i
            check *= T[m];
        }
    }
    return ok;
}

Input File: example/utility/ode_gear.cpp