|
Prev
| Next
|
|
|
|
|
|
number_skip.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Number of Variables That Can be Skipped: Example and Test
# include <cppad/cppad.hpp>
bool number_skip(void)
{ bool ok = true;
using CppAD::AD;
// independent variable vector
CppAD::vector< AD<double> > ax(2);
ax[0] = 0.;
ax[1] = 1.;
Independent(ax);
// Use a conditional expression
CppAD::vector< AD<double> > ay(1);
// variable that gets optimized out
AD<double> az = ax[0] * ax[0];
// conditional expression
ay[0] = CondExpLt(ax[0], ax[1], ax[0] + ax[1], ax[0] - ax[1]);
// create function object F : x -> ay
CppAD::ADFun<double> f;
f.Dependent(ax, ay);
// use zero order to evaluate F[ (3, 4) ]
CppAD::vector<double> x( f.Domain() );
CppAD::vector<double> y( f.Range() );
x[0] = 3.;
x[1] = 4.;
y = f.Forward(0, x);
ok &= (y[0] == x[0] + x[1]);
// before call to optimize
ok &= f.number_skip() == 0;
size_t n_var = f.size_var();
// now optimize the operation sequence
f.optimize();
// after optimize, check forward mode result
x[0] = 4.;
x[1] = 3.;
y = f.Forward(0, x);
ok &= (y[0] == x[0] - x[1]);
// after optimize, check amount of optimization
ok &= f.size_var() == n_var - 1;
ok &= f.number_skip() == 1;
return ok;
}
Input File: example/general/number_skip.cpp