|
Prev
| Next
|
|
|
|
|
|
min_nso_linear.hpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
min_nso_linear Source Code
namespace {
CPPAD_TESTVECTOR(double) min_nso_linear_join(
const CPPAD_TESTVECTOR(double)& x ,
const CPPAD_TESTVECTOR(double)& u )
{ size_t n = x.size();
size_t s = u.size();
CPPAD_TESTVECTOR(double) xu(n + s);
for(size_t j = 0; j < n; j++)
xu[j] = x[j];
for(size_t j = 0; j < s; j++)
xu[n + j] = u[j];
return xu;
}
}
// BEGIN C++
namespace CppAD { // BEGIN_CPPAD_NAMESPACE
// BEGIN PROTOTYPE
template <class DblVector, class SizeVector>
bool min_nso_linear(
size_t level ,
ADFun<double>& g ,
ADFun<double>& a ,
const DblVector& epsilon ,
SizeVector maxitr ,
double b_in ,
const DblVector& x_in ,
DblVector& x_out )
// END PROTOTYPE
{
using std::fabs;
//
// number of absolute value terms
size_t s = a.Range();
//
// size of domain for f
size_t n = g.Domain() - s;
//
// size of range space for f
size_t m = g.Range() - s;
//
CPPAD_ASSERT_KNOWN(
level <= 5,
"min_nso_linear: level is not less that or equal 5"
);
CPPAD_ASSERT_KNOWN(
size_t(epsilon.size()) == 2,
"min_nso_linear: size of epsilon not equal to 2"
);
CPPAD_ASSERT_KNOWN(
size_t(maxitr.size()) == 3,
"min_nso_linear: size of maxitr not equal to 3"
);
CPPAD_ASSERT_KNOWN(
g.Domain() > s && g.Range() > s,
"min_nso_linear: g, a is not an abs-normal representation"
);
CPPAD_ASSERT_KNOWN(
m == 1,
"min_nso_linear: m is not equal to 1"
);
CPPAD_ASSERT_KNOWN(
size_t(x_in.size()) == n,
"min_nso_linear: size of x_in not equal to n"
);
CPPAD_ASSERT_KNOWN(
size_t(x_out.size()) == n,
"min_nso_linear: size of x_out not equal to n"
);
CPPAD_ASSERT_KNOWN(
epsilon[0] < b_in,
"min_nso_linear: b_in <= epsilon[0]"
);
if( level > 0 )
{ std::cout << "start min_nso_linear\n";
std::cout << "b_in = " << b_in << "\n";
CppAD::abs_print_mat("x_in", n, 1, x_in);
}
// level in abs_min_linear sub-problem
size_t level_tilde = 0;
if( level > 0 )
level_tilde = level - 1;
//
// maxitr in abs_min_linear sub-problem
SizeVector maxitr_tilde(2);
maxitr_tilde[0] = maxitr[1];
maxitr_tilde[1] = maxitr[2];
//
// epsilon in abs_min_linear sub-problem
DblVector eps_tilde(2);
eps_tilde[0] = epsilon[0] / 10.;
eps_tilde[1] = epsilon[1] / 10.;
//
// current bound
double b_cur = b_in;
//
// initilaize the current x
x_out = x_in;
//
// value of a(x) at current x
DblVector a_cur = a.Forward(0, x_out);
//
// (x_out, a_cur)
DblVector xu_cur = min_nso_linear_join(x_out, a_cur);
//
// value of g[ x_cur, a_cur ]
DblVector g_cur = g.Forward(0, xu_cur);
//
for(size_t itr = 0; itr < maxitr[0]; itr++)
{
// Jacobian of g[ x_cur, a_cur ]
DblVector g_jac = g.Jacobian(xu_cur);
//
// bound in abs_min_linear sub-problem
DblVector bound_tilde(n);
for(size_t j = 0; j < n; j++)
bound_tilde[j] = b_cur;
//
DblVector delta_x(n);
bool ok = abs_min_linear(
level_tilde, n, m, s,
g_cur, g_jac, bound_tilde, eps_tilde, maxitr_tilde, delta_x
);
if( ! ok )
{ if( level > 0 )
std::cout << "end min_nso_linear: abs_min_linear failed\n";
return false;
}
//
// new candidate value for x
DblVector x_new(n);
double max_delta_x = 0.0;
for(size_t j = 0; j < n; j++)
{ x_new[j] = x_out[j] + delta_x[j];
max_delta_x = std::max(max_delta_x, std::fabs( delta_x[j] ) );
}
//
if( max_delta_x < b_cur && max_delta_x < epsilon[0] )
{ if( level > 0 )
std::cout << "end min_nso_linear: delta_x is near zero\n";
return true;
}
// value of abs-normal approximation at minimizer
DblVector g_tilde = CppAD::abs_eval(n, m, s, g_cur, g_jac, delta_x);
//
double derivative = (g_tilde[0] - g_cur[0]) / max_delta_x;
CPPAD_ASSERT_UNKNOWN( derivative <= 0.0 )
if( - epsilon[1] < derivative )
{ if( level > 0 )
std::cout << "end min_nso_linear: derivative near zero\n";
return true;
}
//
// value of a(x) at new x
DblVector a_new = a.Forward(0, x_new);
//
// (x_new, a_new)
DblVector xu_new = min_nso_linear_join(x_new, a_new);
//
// value of g[ x_new, a_new ]
DblVector g_new = g.Forward(0, xu_new);
//
//
// check for descent of objective
double rate_new = (g_new[0] - g_cur[0]) / max_delta_x;
if( - epsilon[1] < rate_new )
{ // did not get sufficient descent
b_cur /= 2.0;
if( level > 0 )
std::cout << "itr = " << itr
<< ", rate_new = " << rate_new
<< ", b_cur = " << b_cur << "\n";
//
}
else
{ // got sufficient descent so accept candidate for x
x_out = x_new;
a_cur = a_new;
g_cur = g_new;
xu_cur = xu_new;
//
if( level > 0 )
{ std::cout << "itr = " << itr
<< ", derivative = "<< derivative
<< ", max_delta_x = "<< max_delta_x
<< ", objective = " << g_cur[0] << "\n";
abs_print_mat("x_out", n, 1, x_out);
}
}
}
if( level > 0 )
std::cout << "end min_nso_linear: maximum number of iterations exceeded\n";
return false;
}
} // END_CPPAD_NAMESPACE
Input File: example/abs_normal/min_nso_linear.omh