Prev Next lu_invert.cpp Headings

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@ This is cppad-20221105 documentation. Here is a link to its current documentation .
LuInvert: Example and Test
# include <cstdlib>               // for rand function
# include <cppad/utility/lu_invert.hpp>      // for CppAD::LuInvert
# include <cppad/utility/near_equal.hpp>     // for CppAD::NearEqual
# include <cppad/utility/vector.hpp>  // for CppAD::vector

bool LuInvert(void)
{   bool  ok = true;

# ifndef _MSC_VER
    using std::rand;
    using std::srand;
# endif
    double eps200 = 200.0 * std::numeric_limits<double>::epsilon();

    size_t  n = 7;                        // number rows in A
    size_t  m = 3;                        // number columns in B
    double  rand_max = double(RAND_MAX);  // maximum rand value
    double  sum;                          // element of L * U
    size_t  i, j, k;                      // temporary indices

    // dimension matrices
    CppAD::vector<double>
        A(n*n), X(n*m), B(n*m), LU(n*n), L(n*n), U(n*n);

    // seed the random number generator
    srand(123);

    // pivot vectors
    CppAD::vector<size_t> ip(n);
    CppAD::vector<size_t> jp(n);

    // set pivot vectors
    for(i = 0; i < n; i++)
    {   ip[i] = (i + 2) % n;      // ip = 2 , 3, ... , n-1, 0, 1
        jp[i] = (n + 2 - i) % n;  // jp = 2 , 1, n-1, n-2, ... , 3
    }

    // chose L, a random lower triangular matrix
    for(i = 0; i < n; i++)
    {   for(j = 0; j <= i; j++)
            L [i * n + j]  = rand() / rand_max;
        for(j = i+1; j < n; j++)
            L [i * n + j]  = 0.;
    }
    // chose U, a random upper triangular matrix with ones on diagonal
    for(i = 0; i < n; i++)
    {   for(j = 0; j < i; j++)
            U [i * n + j]  = 0.;
        U[ i * n + i ] = 1.;
        for(j = i+1; j < n; j++)
            U [i * n + j]  = rand() / rand_max;
    }
    // chose X, a random matrix
    for(i = 0; i < n; i++)
    {   for(k = 0; k < m; k++)
            X[i * m + k] = rand() / rand_max;
    }
    // set LU to a permuted combination of both L and U
    for(i = 0; i < n; i++)
    {   for(j = 0; j <= i; j++)
            LU [ ip[i] * n + jp[j] ]  = L[i * n + j];
        for(j = i+1; j < n; j++)
            LU [ ip[i] * n + jp[j] ]  = U[i * n + j];
    }
    // set A to a permuted version of L * U
    for(i = 0; i < n; i++)
    {   for(j = 0; j < n; j++)
        {   // compute (i,j) entry in permuted matrix
            sum = 0.;
            for(k = 0; k < n; k++)
                sum += L[i * n + k] * U[k * n + j];
            A[ ip[i] * n + jp[j] ] = sum;
        }
    }
    // set B to A * X
    for(i = 0; i < n; i++)
    {   for(k = 0; k < m; k++)
        {   // compute (i,k) entry of B
            sum = 0.;
            for(j = 0; j < n; j++)
                sum += A[i * n + j] * X[j * m + k];
            B[i * m + k] = sum;
        }
    }
    // solve for X
    CppAD::LuInvert(ip, jp, LU, B);

    // check result
    for(i = 0; i < n; i++)
    {   for(k = 0; k < m; k++)
        {   ok &= CppAD::NearEqual(
                X[i * m + k], B[i * m + k], eps200, eps200
            );
        }
    }
    return ok;
}

Input File: example/utility/lu_invert.cpp