|
Prev
| Next
|
|
|
|
|
|
lp_box.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
abs_normal lp_box: Example and Test
Problem
Our original problem is
@[@
\begin{array}{rl}
\R{minimize} & x_0 - x_1 \; \R{w.r.t} \; x \in \B{R}^2 \\
\R{subject \; to} & -2 \leq x_0 \leq +2 \; \R{and} \; -2 \leq x_1 \leq +2
\end{array}
@]@
Source
# include <limits>
# include <cppad/utility/vector.hpp>
# include "lp_box.hpp"
bool lp_box(void)
{ bool ok = true;
typedef CppAD::vector<double> vector;
double eps99 = 99.0 * std::numeric_limits<double>::epsilon();
//
size_t n = 2;
size_t m = 0;
vector A(m), b(m), c(n), d(n), xout(n);
c[0] = +1.0;
c[1] = -1.0;
//
d[0] = +2.0;
d[1] = +2.0;
//
size_t level = 0;
size_t maxitr = 20;
//
ok &= CppAD::lp_box(level, A, b, c, d, maxitr, xout);
//
// check optimal value for x
ok &= std::fabs( xout[0] + 2.0 ) < eps99;
ok &= std::fabs( xout[1] - 2.0 ) < eps99;
//
return ok;
}
Input File: example/abs_normal/lp_box.cpp