|
Prev
| Next
|
|
|
|
|
ipopt_solve_retape.cpp |
|
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its
current documentation
.
Nonlinear Programming Retaping: Example and Test
Purpose
This example program demonstrates a case were the ipopt::solve
argument retape
should be true.
# include <cppad/ipopt/solve.hpp>
namespace {
using CppAD::AD;
class FG_eval {
public:
typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;
void operator()(ADvector& fg, const ADvector& x)
{ assert( fg.size() == 1 );
assert( x.size() == 1 );
// compute the Huber function using a conditional
// statement that depends on the value of x.
double eps = 0.1;
if( fabs(x[0]) <= eps )
fg[0] = x[0] * x[0] / (2.0 * eps);
else
fg[0] = fabs(x[0]) - eps / 2.0;
return;
}
};
}
bool retape(void)
{ bool ok = true;
typedef CPPAD_TESTVECTOR( double ) Dvector;
// number of independent variables (domain dimension for f and g)
size_t nx = 1;
// number of constraints (range dimension for g)
size_t ng = 0;
// initial value, lower and upper limits, for the independent variables
Dvector xi(nx), xl(nx), xu(nx);
xi[0] = 2.0;
xl[0] = -1e+19;
xu[0] = +1e+19;
// lower and upper limits for g
Dvector gl(ng), gu(ng);
// object that computes objective and constraints
FG_eval fg_eval;
// options
std::string options;
// retape operation sequence for each new x
options += "Retape true\n";
// turn off any printing
options += "Integer print_level 0\n";
options += "String sb yes\n";
// maximum number of iterations
options += "Integer max_iter 10\n";
// approximate accuracy in first order necessary conditions;
// see Mathematical Programming, Volume 106, Number 1,
// Pages 25-57, Equation (6)
options += "Numeric tol 1e-9\n";
// derivative testing
options += "String derivative_test second-order\n";
// maximum amount of random pertubation; e.g.,
// when evaluation finite diff
options += "Numeric point_perturbation_radius 0.\n";
// place to return solution
CppAD::ipopt::solve_result<Dvector> solution;
// solve the problem
CppAD::ipopt::solve<Dvector, FG_eval>(
options, xi, xl, xu, gl, gu, fg_eval, solution
);
//
// Check some of the solution values
//
ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
double rel_tol = 1e-6; // relative tolerance
double abs_tol = 1e-6; // absolute tolerance
ok &= CppAD::NearEqual( solution.x[0], 0.0, rel_tol, abs_tol);
return ok;
}
Input File: example/ipopt_solve/retape.cpp