Prev Next ipopt_solve_retape.cpp

@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@This is cppad-20221105 documentation. Here is a link to its current documentation .
Nonlinear Programming Retaping: Example and Test

Purpose
This example program demonstrates a case were the ipopt::solve argument retape should be true.
# include <cppad/ipopt/solve.hpp>

namespace {
    using CppAD::AD;

    class FG_eval {
    public:
        typedef CPPAD_TESTVECTOR( AD<double> ) ADvector;
        void operator()(ADvector& fg, const ADvector& x)
        {   assert( fg.size() == 1 );
            assert( x.size()  == 1 );

            // compute the Huber function using a conditional
            // statement that depends on the value of x.
            double eps = 0.1;
            if( fabs(x[0]) <= eps )
                fg[0] = x[0] * x[0] / (2.0 * eps);
            else
                fg[0] = fabs(x[0]) - eps / 2.0;

            return;
        }
    };
}

bool retape(void)
{   bool ok = true;
    typedef CPPAD_TESTVECTOR( double ) Dvector;

    // number of independent variables (domain dimension for f and g)
    size_t nx = 1;
    // number of constraints (range dimension for g)
    size_t ng = 0;
    // initial value, lower and upper limits, for the independent variables
    Dvector xi(nx), xl(nx), xu(nx);
    xi[0] = 2.0;
    xl[0] = -1e+19;
    xu[0] = +1e+19;
    // lower and upper limits for g
    Dvector gl(ng), gu(ng);

    // object that computes objective and constraints
    FG_eval fg_eval;

    // options
    std::string options;
    // retape operation sequence for each new x
    options += "Retape  true\n";
    // turn off any printing
    options += "Integer print_level   0\n";
    options += "String  sb          yes\n";
    // maximum number of iterations
    options += "Integer max_iter      10\n";
    // approximate accuracy in first order necessary conditions;
    // see Mathematical Programming, Volume 106, Number 1,
    // Pages 25-57, Equation (6)
    options += "Numeric tol           1e-9\n";
    // derivative testing
    options += "String  derivative_test            second-order\n";
    // maximum amount of random pertubation; e.g.,
    // when evaluation finite diff
    options += "Numeric point_perturbation_radius  0.\n";

    // place to return solution
    CppAD::ipopt::solve_result<Dvector> solution;

    // solve the problem
    CppAD::ipopt::solve<Dvector, FG_eval>(
        options, xi, xl, xu, gl, gu, fg_eval, solution
    );
    //
    // Check some of the solution values
    //
    ok &= solution.status == CppAD::ipopt::solve_result<Dvector>::success;
    double rel_tol    = 1e-6;  // relative tolerance
    double abs_tol    = 1e-6;  // absolute tolerance
    ok &= CppAD::NearEqual( solution.x[0], 0.0,  rel_tol, abs_tol);

    return ok;
}

Input File: example/ipopt_solve/retape.cpp