Prev
Next
Index->
contents
reference
index
search
external
Up->
CppAD
Theory
ReverseTheory
exp_reverse
exp_reverse
Headings
@(@\newcommand{\W}[1]{ \; #1 \; } \newcommand{\R}[1]{ {\rm #1} } \newcommand{\B}[1]{ {\bf #1} } \newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} } \newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} } \newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} } \newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation
. Here is a link to its
current documentation
.
Exponential Function Reverse Mode Theory
We use the reverse theory
standard math function
definition for the functions
@(@ H @)@
and
@(@ G @)@
. The zero order forward mode formula for the
exponential
is
@[@ z^{(0)} = F ( x^{(0)} ) @]@
and for
@(@ j > 0 @)@
,
@[@ z^{(j)} = x^{(j)} d^{(0)} + \frac{1}{j} \sum_{k=1}^{j} k x^{(k)} z^{(j-k)} @]@
where
@[@ d^{(0)} = \left\{ \begin{array}{ll} 0 & \R{if} \; F(x) = \R{exp}(x) \\ 1 & \R{if} \; F(x) = \R{expm1}(x) \end{array} \right. @]@
For order
@(@ j = 0, 1, \ldots @)@
we note that
@[@ \begin{array}{rcl} \D{H}{ x^{(j)} } & = & \D{G}{ x^{(j)} } + \D{G}{ z^{(j)} } \D{ z^{(j)} }{ x^{(j)} } \\ & = & \D{G}{ x^{(j)} } + \D{G}{ z^{(j)} } ( d^{(0)} + z^{(0)} ) \end{array} @]@
If
@(@ j > 0 @)@
, then for
@(@ k = 1 , \ldots , j @)@
@[@ \begin{array}{rcl} \D{H}{ x^{(k)} } & = & \D{G}{ x^{(k)} } + \D{G}{ z^{(j)} } \frac{1}{j} k z^{(j-k)} \\ \D{H}{ z^{(j-k)} } & = & \D{G}{ z^{(j-k)} } + \D{G}{ z^{(j)} } \frac{1}{j} k x^{(k)} \end{array} @]@
Input File: omh/theory/exp_reverse.omh