|
Prev
| Next
|
|
|
|
|
|
exp_eps_for0.cpp |
Headings |
@(@\newcommand{\W}[1]{ \; #1 \; }
\newcommand{\R}[1]{ {\rm #1} }
\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\D}[2]{ \frac{\partial #1}{\partial #2} }
\newcommand{\DD}[3]{ \frac{\partial^2 #1}{\partial #2 \partial #3} }
\newcommand{\Dpow}[2]{ \frac{\partial^{#1}}{\partial {#2}^{#1}} }
\newcommand{\dpow}[2]{ \frac{ {\rm d}^{#1}}{{\rm d}\, {#2}^{#1}} }@)@
This is cppad-20221105 documentation. Here is a link to its
current documentation
.
exp_eps: Verify Zero Order Forward Sweep
# include <cmath> // for fabs function
bool exp_eps_for0(double *v0) // double v0[8]
{ bool ok = true;
double x = .5;
v0[1] = x; // abs_x = x;
ok &= std::fabs( v0[1] - 0.5) < 1e-10;
v0[2] = 1. * v0[1]; // temp = term * abs_x;
ok &= std::fabs( v0[2] - 0.5) < 1e-10;
v0[3] = v0[2] / 1.; // term = temp / Type(k);
ok &= std::fabs( v0[3] - 0.5) < 1e-10;
v0[4] = 1. + v0[3]; // sum = sum + term;
ok &= std::fabs( v0[4] - 1.5) < 1e-10;
v0[5] = v0[3] * v0[1]; // temp = term * abs_x;
ok &= std::fabs( v0[5] - 0.25) < 1e-10;
v0[6] = v0[5] / 2.; // term = temp / Type(k);
ok &= std::fabs( v0[6] - 0.125) < 1e-10;
v0[7] = v0[4] + v0[6]; // sum = sum + term;
ok &= std::fabs( v0[7] - 1.625) < 1e-10;
return ok;
}
bool exp_eps_for0(void)
{ double v0[8];
return exp_eps_for0(v0);
}
Input File: introduction/exp_eps_for0.cpp